Lithium-oxygen battery

Image: MIT

New lithium-oxygen battery technology proposed by researchers from MIT, Argonne National Laboratory, and Peaking University, promises a scalable, cheap, and safe option in energy storage.

There is immense promise for lithium-oxygen batteries in such applications as electric cars and portable electronics. In fact, they are between five and 15 times more efficient than lithium-ion batteries in transportation applications due to their high energy output potential in proportion to their weight.

But there have been complications in developing and especially implementing these batteries in the marketplace. Primarily, they’ve been known to waste energy and degrade quickly.

But this new study, co-authored by ECS member and past IMLB chair Khalil Amine, states that the theoretical potential for lithium-oxygen batteries could be met while overcoming some of the biggest barriers prohibiting the technology.

Once of the primary focuses of the group was overcoming the mismatch in voltages that happens in charging and discharging the battery. Because the output voltage is more than 1.2 volts lower that that used to charge, there is typically a significant power loss.

“You waste 30 percent of the electrical energy as heat in charging,” says Ju Li, professor at MIT and co-author of the paper. “It can actually burn if you charge it too fast.”

(more…)

As the landscape of energy harvesting evolves, so do the devices that store that energy. According to researchers from Toyohashi University, all-solid-state lithium rechargeable batteries are at the top of the list of promising future energy storage technologies due to their high energy density, safety, and extreme cycle stability.

ECS member Yoji Sakurai and a team from the university’s Department of Electrical and Electronic Information Engineering recently published a paper detailing their development to advance the all-solid-state batteries, which pushes past barriers related to electrochemical performance.

(MORE: Read Sakurai’s previously published paper in ECS Electrochemistry Letters.)

(more…)

From Bourbon to Batteries

There is no short supply of bourbon in Kentucky. But like many products, the distillation of the state’s unofficial beverage produces a sludgy waste known as bourbon stillage. The question for one researcher from the University of Kentucky’s Center for Applied Energy Research was how to repurpose that waste into something with tremendous potential.

To answer that question, ECS member Stephen Lipka and his Electrochemical Power Sources group set out to transform the bourbon stillage through a process called hydrothermal carbonization, where the liquid waste gets a dose of water and heat to produce green materials.

(MORE: See more of Lipka’s work in the ECS Digital Library.)

“In Kentucky, we have this stillage that contains a lot of sugars and carbohydrates so we tried it and it works beautifully,” says Lipka. “We take these [green materials] and we then do additional post-processing to convert it into useful materials that can be used for batteries.”

(more…)

A new report by TechXplore examines a recently published review paper on the potential in nanomaterials for rechargeable lithium batteries. In the paper, lead-author and ECS member Yi Cui of Stanford University, explores the barriers that still exist in lithium rechargeables and how nanomaterials may be able to lend themselves to the development of high-capacity batteries.

When trying to design affordable batteries with high-energy densities, researchers have encountered many issues, including electrode degradation and solid-electrolyte interphase. According to the paper’s authors, possible solutions for many of these hurdles lie in nanomaterials.

Cui’s comprehensive overview of rechargeable lithium batteries and the potential of nanaomaterials in these applications came from 100 highly-reputable publications, including the following ECS published papers:

(more…)

Modified Cathode

Cathode particles treated with the carbon dioxide-based mixture show oxygen vacancies on the surface.
Image: Laboratory for Energy Storage and Conversion, UC San Diego

An international team of researchers has recently demonstrated a 30 to 40 percent increase in the energy storage capabilities of cathode materials.

The team, led by ECS member and 2016 Charles W. Tobias Young Investigator Award winner, Shirley Meng, has successfully treated lithium-rich cathode particles with a carbon dioxide-based gas mixture. This process introduced oxygen vacancies on the surface of the material, allowing for a huge boost to the amount of energy stored per unit mass and proving that oxygen plays a significant role in battery performance.

This greater understanding and improvement in the science behind the battery materials could accelerate developments in battery performance, specifically in applications such as electric vehicles.

(READ: “Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries“)

“We’ve uncovered a new mechanism at play in this class of lithium-rich cathode materials,” says Meng, past guest editor of JES Focus Issue on Intercalation Compounds for Rechargeable Batteries. “With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity.”

(more…)

When lithium-ion pioneers M. Stanley Whittingham, Adam Heller, Michael Thackeray, and of course, John Goodenough were in the initial stages of the technology’s development in the 1970s through the late 1980s, there was no clear idea of just how monumental the lithium-based battery would come to be. Even up to a few years ago, the idea of an electric vehicle or renewable grid dependent on lithium-ion technology seemed like a pipe dream. But now, electric vehicles are making their way to the mainstream and with them comes the commercially-driven race to acquire lithium.

Just look at the rise of Tesla and success of the Nissan LEAF. Not only are these cars speaking to a real concern for environmental protection, they’re also becoming the more affordable option in transportation. For example, the LEAF goes for less than $25,000 and gets more than 80 miles per charge. Plus, electric vehicles can currently run on electricity that’s costing around $0.11 per kWh, which is roughly equivalent to $0.99 per gallon. The last year alone saw a 60 percent spike in the sale of electric vehicles.

“Electric cars are just plain better,” says James Fenton, director of the Florida Solar Energy Center and newly appointed ECS Secretary. “They’re cheaper to buy up front and they’re cheaper to operate, which years ago, was not the case.”

All things considered, lithium may just be the number one commodity of our time.

But this movement is not specific to the U.S. alone. In Germany – a country dedicated to a renewable future – there is a mandate that all new cars in the country will have to be emission-free by 2030. Similarly in Norway, the government is looking to ban gasoline-powered cars by 2025.

So with the transportation sector heading away from gasoline-powered cars and toward lithium battery-based vehicles globally, what will that do to lithium supplies?

(more…)

Hearing aid battery

One pair of ZPower hearing aid batteries can keep more than 200 disposable batteries out of the landfill.
Image: ZPower

Lithium based technologies have been dominant in the battery arena since Sony commercialized the first Li-ion battery in 1991. ECS member Jeff Ortega, however, believes that a different material holds more promise than its lithium competitor in the world of microbattery technology.

During the 229th ECS Meeting, Ortega presented work that focused on the analysis of data from commercially available rechargeable Li-ion and Li-polymer cells. He then compared the silver-zinc button cells of ZPower, where he currently serves as the company’s director of research. His results showed that the company’s silver-zinc button cells offer both greater capacity and greater density than their Li-ion and Li-polymer counterparts. Additionally, Ortega stated that the cells are also generally safer and better for the environment.

[MORE: Read Ortega’s meeting abstract.]

According to Ortega, the small silver-zinc cells have 57 percent greater energy density than both types of lithium based calls. Their potential applications including medical devices, body worn sensors, wearables, and any other microbattery application that demands long wear time. Currently, ZPower has implement these cells in hearing aid technologies.

“The ZPower Rechargeable System for Hearing Aids makes it easy to convert many new and existing hearing aids to rechargeable technology,” says Ortega in a statement. “The Rechargeable System offers a full day of power, charges overnight in the hearing aids, takes the place of an estimated 200 disposable batteries and lasts a full year. The ZPower hearing aid battery is replaced once per year by a hearing care professional, so the patient never has to touch a hearing aid battery again.”

Powering Homes with Tofu

Energy comes in many forms. From solar to wind, there are an abundance of energy technologies available today. But one village in Indonesia is using on very different, very unique product to power their homes: Tofu.

The remote Kalisari village in Indonesia has a vibrant tofu producing industry (over 150 tofu businesses, to be exact). To produce this tofu, a lot of water is required. To make just over two pounds of tofu, some nine gallons of water is required. That water, inevitably, transforms into wastewater and it typically tossed into a nearby drainage system.

But the village has found a way to make that waste reusable in the form of energy. By treating the wastewater with a specific type of bacteria, biogas can be produced. The clean, renewable energy can be pumped directly into households.

(more…)

We may understand melanin best as the pigment that dictates our skin tone, but these pigments are actually super plentiful – existing in almost every organism on earth. While melanin is all around us, there is still much to learn about its chemical structure.

A group of researchers from Carnegie Mellon University set out to better understand melanin, and in doing so, found that its chemical structure may be conducive to creating certain kinds of batteries.

“Functionally, different types of melanin molecules have quite different chemistries, so putting them together is a little like solving a jigsaw puzzle, with each molecule a puzzle piece,” says Venkat Viswanathan, ECS member and co-author of the study. “You could take any number of these pieces and mix and match them, even stack them on top of each other. So what we researched was, which of these arrangements is really correct?”

(more…)

batteries-1379208_640In late 2015, a team of Cambridge University researchers led by ECS member Clare Grey, detailed research in the journal Science on the path to the “ultimate” battery. According to the study, the researchers stated they had successfully demonstrated how to overcome many of the problems preventing the theoretically promising lithium-air battery from being commercially viable.

The key component to this research relies on a highly porous, “fluffy” carbon electrode made from graphene. The researchers cautioned that although the preliminary results were very promising, much work was yet to be done to take lithium-air batteries from the lab to the marketplace.

However, the research got many scientists in energy science and technology talking. Like all groundbreaking results, there has been much discussion and some controversy over the research published by Grey and her team.

(more…)