While we may have a good understanding of battery application and potential, we still lack a great deal of knowledge about what is actually happening inside a battery cell during cycles. In an effort to build a better battery, ECS members from the U.S. Department of Energy’s Argonne National Laboratory have made a novel development to improve battery performance testing.

Future of energy

The team’s work focuses on the design and placement of the reference electrode (RE), which measure voltage of the individual electrodes making up a battery cell, to enhance the quality of information collected from lithium-ion battery cells during cycles. By improving our knowledge of what’s happening inside the battery, researchers will more easily be able to develop longer-lasting batteries.

“Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers,” said Daniel Abraham, ECS member and co-author of the newly published study in the Journal of The Electrochemical Society. “This kind of detailed information provides insight into a battery cell’s health; it’s the type of information that researchers need to evaluate battery materials at all stages of their development.”

(more…)

PV Hybrid

A research team aims to make a battery and solar cell hybrid out of two single systems.
Image: Lunghammer – TU Graz

People across the globe are looking toward renewable solutions to change the landscape of energy. But what happens when the sun goes down and the wind stops blowing? In order to guarantee green energy that is consistent, reliable energy storage systems are critical.

“Currently, single systems of photovoltaic cells which are connected together — mostly lead-based batteries and vast amounts of cable — are in use,” said Ilie Hanzu, TU Graz professor and past member of ECS. “We want to make a battery and solar cell hybrid out of two single systems which is not only able to convert electrical energy, but also store it.”

The idea of a battery and solar cell hybrid is completely novel scientific territory. With this project, entitled SolaBat, the team hopes to develop a product that has commercial applications. For this, the scientists will have to develop the perfect combination of functional materials.

“In the hybrid system, high-performance materials share their tasks in the solar cell and in the battery,” Hanzu said. “We need materials that reliably fulfill their respective tasks and that are also electrochemically compatible with other materials so that they work together in one device.”

(more…)

When the loaves in your breadbox begin to develop a moldy exterior caused by fungi, they tend to find a new home at the bottom of a trash can. However, researchers have recently developed some pretty interesting results that suggest bread mold could be the key to producing more sustainable electrochemical materials for use in rechargeable batteries.

For the first time, researchers were able to show that the fungus Neurospora crassa (better known as the enemy to bread) can transform manganese into mineral composites with promising electrochemical properties.

(MORE: Read the full paper.)

“We have made electrochemically active materials using a fungal manganese biomineralization process,” says Geoffrey Gadd of the University of Dundee in Scotland. “The electrochemical properties of the carbonized fungal biomass-mineral composite were tested in a supercapacitor and a lithium-ion battery, and it [the composite] was found to have excellent electrochemical properties. This system therefore suggests a novel biotechnological method for the preparation of sustainable electrochemical materials.”

This from University of Dundee:

In the new study, Gadd and his colleagues incubated N. crassa in media amended with urea and manganese chloride (MnCl2) and watched what happened. The researchers found that the long branching fungal filaments (or hyphae) became biomineralized and/or enveloped by minerals in various formations. After heat treatment, they were left with a mixture of carbonized biomass and manganese oxides. Further study of those structures show that they have ideal electrochemical properties for use in supercapacitors or lithium-ion batteries.

Read the full article here.

The manganese oxides in the lithium-ion batteries are showing an excellent cycling stability and more than 90 percent capacity after 200 cycles.

Researchers have found a way to use rust to build a solar-powered battery.Image: Flickr

Researchers have found a way to use rust to build a solar-powered battery.
Image: Diego Torres Silvestre

What happens when corrosion meets energy? For researchers at Stanford University, the marriage of those two uniquely electrochemical topics could yield an answer to large-scale solar power storage.

The question of how to store solar power when the sun goes down has been on the forefront of scientific discussion. While electrochemical energy storage devices exist, they are typically either too expensive to work on a large-scale or not efficient enough.

Building a solar-powered battery

New research shows that metal oxides, such as rust, can be fashioned into solar cells capable of splitting water into hydrogen and oxygen. The research could be looked at revelatory, especially when considering large-scale storage solutions, because of its novel heat attributes.

While we knew the promising solar power potential of metal oxides before, we believed that the efficiency of cells crafted from these materials would be very low. The new study, however, disproves that theory.

The team showed that as the cells grow hotter, efficiency levels increase. This is a huge benefit when it comes to large-scale, solar energy conversion and it the polar opposite of the traditional silicon solar cell.

“We’ve shown that inexpensive, abundant, and readily processed metal oxides could become better producers of electricity than was previously supposed,” says William Chueh, an assistant professor of materials science and engineering.

(more…)

Sustainable Battery

The new carbon-based material for sodium-ion batteries can be extracted from apples.
Image: KIT

The saying goes: an apple a day keeps the doctor away; but in this case, an apple may be the answer to the next generation of energy storage technology.

ECS member Stefano Passerini of the Karlsruhe Institute of Technology is leading a study to extract carbon-based materials for sodium-ion batteries from organic apple waste.

Developing batteries from waste

This new development could help reduce the costs of future energy storage systems by applying a cheap material with excellent electrochemical properties to the already promising field of sodium-ion batteries.

(MORE: Read more research by Passerini.)

Many researchers are currently looking to sodium-ion batteries as the next generation of energy storage, with the ability to outpace the conventional lithium-ion battery.

The future of sodium-ion batteries

Interest in sodium-ion batteries dates back to the 1980s, but discoveries haven’t taken off until recently. Researchers are now finding way to combat low energy densities and short life cycles through using novel materials such as apples.

(MORE: Read the full paper in ChemElectroChem.)

Sodium-ion batteries could prove to be the next big thing in large scale energy storage due to the high abundance of materials used in development and the relatively low costs involved.

(more…)

Advancing Lithium-Air Batteries

As electronics advances, the demand for high-performance batteries increases. The lithium-ion battery is currently leading the charge in powering portable electronic devices, but another lithium-based battery contender is on the horizon.

The lithium-air battery is one of the most promising research areas in current lithium-based battery technology. While researchers such as ECS’s K.M. Abraham have been on the Li-air beat since the late 90s, current research is looking to propel this technology with the hopes of commercializing it for practical use.

A new contender: Lithium-air batteries

Recently, Khalil Amine, IMLB chair; and Larry Curtiss, IMLB invited speaker, co-authored a paper detailing a lithium-air battery that could store up to five times more energy than today’s lithium-ion battery.

(MORE: Submit your abstract for IMLB today!)

This work brings society one step closer to the commercial use of lithium-air batteries. In previous works regarding Li-air, researchers continuously encountered the same phenomenon of the clogging of the pores of the electrode.

(more…)

ECS Member Makes Strides in Battery Safety

IMG_8802_cropped

Image: Penn State

With the newly popular hoverboards bursting into flames, safety in batteries has made its way to the public spotlight. To increase lithium ion battery safety, one ECS member is working to develop batteries with built in sensors to warn users of potential problems.

Chao-Yang Wang, 19-year ECS member, is taking on the challenge of making the highly popular lithium ion battery safer in light of demands for smaller, more energy efficient devices.

“Li-ion batteries essentially provide portable power for everything,” says Wang. “Your cell phone charge can now last for a week instead of a day, but it’s still the same size. The battery has a lot more energy density, you are compressing more and more energy into a smaller space, and you have to be careful when you do that. Our job is to come up with solutions to provide safety while at the same time increasing performance.”

While lithium ion batteries are typically safe under normal conditions, the battery’s flammable electrolyte solution could overheat and catch fire if it is punctured or overcharged.

(more…)

IIT Student Chapter Holds First Event

Dr. Chamberlain giving a lecture the students and faculty at the IIT student chapter's first event.

Dr. Chamberlain giving a lecture to the students and faculty at the IIT student chapter’s first event.

The Illinois Institute of Technology is one of ECS’s newest student chapters, and they held their first event on November 23, 2015. They received an excellent attendance rate of nearly one hundred students in addition to IIT faculty members and faculty from other near by institutions.  This event included the director of the Argonne Collaborative Center for Energy Storage Science (ACCESS), Dr. Jeffrey Chamberlain, who is also the deputy director of the Joint Center for Energy Storage Research (JCESR). Dr. Chamberlain hosted a lecture that included information and a detailed analysis on the innovation of battery technologies.

Following the lecture, a Q&A session was held, which gave the students and faculty in attendance the opportunity to address questions produced from Dr. Chamberlain’s lecture. These questions included the topics of environmental issues, the life cycle of lithium ion batteries, development of lithium-air batteries and even government policy and funding. The formal lecture and Q&A session was followed with refreshments and continued discussion. The IIT student chapter is extremely grateful to Dr. Chamberlain for taking the time out of his very busy schedule to come and interact with the chapter at their first event.

Congratulations, IIT Student Chapter on a very successful kick-off event!

Advances in Sodium Batteries

With energy demands increasing every day, researchers are looking toward the next generation of energy storage technology. While society has depended on the lithium ion battery for these needs for some time, the rarity and expense of the materials needed to produce the battery is beginning to conflict with large-scale storage needs.

To combat this issue, a French team comprised of researchers primarily from CNRS and CEA is making gains in the field of electrochemical energy storage with their new development of an alternative technology for lithium ion batteries in specific sectors.

Beyond Lithium

Instead of the rare and expensive lithium, these researchers are focusing on the use of sodium ions—a more cost efficient and abundant materials. With efficiently levels comparable to that of lithium, many commercial sectors are showing an increasing interest for sodium’s potential in storing renewable energy.

While this development takes the use of sodium to a new level, the idea has been around since the 1980s. However, sodium never took off as the primary battery building material due to low energy densities and short life cycles. It was then that researchers chose to power electronics with lithium for higher efficiency levels.

(more…)

Powering Batteries in Harsh Environments

Researchers across the globe have been investing more and more effort into developing new materials to power the next generation of devices. With the population growing and energy demands rising, the need for smaller, faster, and more efficient batteries is more prevalent than ever.

While some researchers are attempting to develop complex material combinations to tackle this issue, researchers from Rice University are going back to basics by developing a clay-based electrolyte.

Utilizing clay as a primary material in a lithium ion battery could address current issues that the battery has with high temperature performance. With clay, the researchers were able to supply stable electrical power in environments with temperatures up 120°C. The addition of clay to the electrode could allow lithium ion batteries to function in harsh environments including space, defense, and oil and gas applications.

(more…)