Researchers have found a way to use rust to build a solar-powered battery.Image: Flickr

Researchers have found a way to use rust to build a solar-powered battery.
Image: Diego Torres Silvestre

What happens when corrosion meets energy? For researchers at Stanford University, the marriage of those two uniquely electrochemical topics could yield an answer to large-scale solar power storage.

The question of how to store solar power when the sun goes down has been on the forefront of scientific discussion. While electrochemical energy storage devices exist, they are typically either too expensive to work on a large-scale or not efficient enough.

Building a solar-powered battery

New research shows that metal oxides, such as rust, can be fashioned into solar cells capable of splitting water into hydrogen and oxygen. The research could be looked at revelatory, especially when considering large-scale storage solutions, because of its novel heat attributes.

While we knew the promising solar power potential of metal oxides before, we believed that the efficiency of cells crafted from these materials would be very low. The new study, however, disproves that theory.

The team showed that as the cells grow hotter, efficiency levels increase. This is a huge benefit when it comes to large-scale, solar energy conversion and it the polar opposite of the traditional silicon solar cell.

“We’ve shown that inexpensive, abundant, and readily processed metal oxides could become better producers of electricity than was previously supposed,” says William Chueh, an assistant professor of materials science and engineering.

(more…)

Sustainable Battery

The new carbon-based material for sodium-ion batteries can be extracted from apples.
Image: KIT

The saying goes: an apple a day keeps the doctor away; but in this case, an apple may be the answer to the next generation of energy storage technology.

ECS member Stefano Passerini of the Karlsruhe Institute of Technology is leading a study to extract carbon-based materials for sodium-ion batteries from organic apple waste.

Developing batteries from waste

This new development could help reduce the costs of future energy storage systems by applying a cheap material with excellent electrochemical properties to the already promising field of sodium-ion batteries.

(MORE: Read more research by Passerini.)

Many researchers are currently looking to sodium-ion batteries as the next generation of energy storage, with the ability to outpace the conventional lithium-ion battery.

The future of sodium-ion batteries

Interest in sodium-ion batteries dates back to the 1980s, but discoveries haven’t taken off until recently. Researchers are now finding way to combat low energy densities and short life cycles through using novel materials such as apples.

(MORE: Read the full paper in ChemElectroChem.)

Sodium-ion batteries could prove to be the next big thing in large scale energy storage due to the high abundance of materials used in development and the relatively low costs involved.

(more…)

Advancing Lithium-Air Batteries

As electronics advances, the demand for high-performance batteries increases. The lithium-ion battery is currently leading the charge in powering portable electronic devices, but another lithium-based battery contender is on the horizon.

The lithium-air battery is one of the most promising research areas in current lithium-based battery technology. While researchers such as ECS’s K.M. Abraham have been on the Li-air beat since the late 90s, current research is looking to propel this technology with the hopes of commercializing it for practical use.

A new contender: Lithium-air batteries

Recently, Khalil Amine, IMLB chair; and Larry Curtiss, IMLB invited speaker, co-authored a paper detailing a lithium-air battery that could store up to five times more energy than today’s lithium-ion battery.

(MORE: Submit your abstract for IMLB today!)

This work brings society one step closer to the commercial use of lithium-air batteries. In previous works regarding Li-air, researchers continuously encountered the same phenomenon of the clogging of the pores of the electrode.

(more…)

ECS Member Makes Strides in Battery Safety

IMG_8802_cropped

Image: Penn State

With the newly popular hoverboards bursting into flames, safety in batteries has made its way to the public spotlight. To increase lithium ion battery safety, one ECS member is working to develop batteries with built in sensors to warn users of potential problems.

Chao-Yang Wang, 19-year ECS member, is taking on the challenge of making the highly popular lithium ion battery safer in light of demands for smaller, more energy efficient devices.

“Li-ion batteries essentially provide portable power for everything,” says Wang. “Your cell phone charge can now last for a week instead of a day, but it’s still the same size. The battery has a lot more energy density, you are compressing more and more energy into a smaller space, and you have to be careful when you do that. Our job is to come up with solutions to provide safety while at the same time increasing performance.”

While lithium ion batteries are typically safe under normal conditions, the battery’s flammable electrolyte solution could overheat and catch fire if it is punctured or overcharged.

(more…)

IIT Student Chapter Holds First Event

Dr. Chamberlain giving a lecture the students and faculty at the IIT student chapter's first event.

Dr. Chamberlain giving a lecture to the students and faculty at the IIT student chapter’s first event.

The Illinois Institute of Technology is one of ECS’s newest student chapters, and they held their first event on November 23, 2015. They received an excellent attendance rate of nearly one hundred students in addition to IIT faculty members and faculty from other near by institutions.  This event included the director of the Argonne Collaborative Center for Energy Storage Science (ACCESS), Dr. Jeffrey Chamberlain, who is also the deputy director of the Joint Center for Energy Storage Research (JCESR). Dr. Chamberlain hosted a lecture that included information and a detailed analysis on the innovation of battery technologies.

Following the lecture, a Q&A session was held, which gave the students and faculty in attendance the opportunity to address questions produced from Dr. Chamberlain’s lecture. These questions included the topics of environmental issues, the life cycle of lithium ion batteries, development of lithium-air batteries and even government policy and funding. The formal lecture and Q&A session was followed with refreshments and continued discussion. The IIT student chapter is extremely grateful to Dr. Chamberlain for taking the time out of his very busy schedule to come and interact with the chapter at their first event.

Congratulations, IIT Student Chapter on a very successful kick-off event!

Advances in Sodium Batteries

With energy demands increasing every day, researchers are looking toward the next generation of energy storage technology. While society has depended on the lithium ion battery for these needs for some time, the rarity and expense of the materials needed to produce the battery is beginning to conflict with large-scale storage needs.

To combat this issue, a French team comprised of researchers primarily from CNRS and CEA is making gains in the field of electrochemical energy storage with their new development of an alternative technology for lithium ion batteries in specific sectors.

Beyond Lithium

Instead of the rare and expensive lithium, these researchers are focusing on the use of sodium ions—a more cost efficient and abundant materials. With efficiently levels comparable to that of lithium, many commercial sectors are showing an increasing interest for sodium’s potential in storing renewable energy.

While this development takes the use of sodium to a new level, the idea has been around since the 1980s. However, sodium never took off as the primary battery building material due to low energy densities and short life cycles. It was then that researchers chose to power electronics with lithium for higher efficiency levels.

(more…)

Powering Batteries in Harsh Environments

Researchers across the globe have been investing more and more effort into developing new materials to power the next generation of devices. With the population growing and energy demands rising, the need for smaller, faster, and more efficient batteries is more prevalent than ever.

While some researchers are attempting to develop complex material combinations to tackle this issue, researchers from Rice University are going back to basics by developing a clay-based electrolyte.

Utilizing clay as a primary material in a lithium ion battery could address current issues that the battery has with high temperature performance. With clay, the researchers were able to supply stable electrical power in environments with temperatures up 120°C. The addition of clay to the electrode could allow lithium ion batteries to function in harsh environments including space, defense, and oil and gas applications.

(more…)

Hydrogen Meets Lithium Ion Batteries

When it comes to energy storage, hydrogen is becoming more and more promising. From hydrogen fuel cell vehicles to the “artificial leaf” to the transformation of waste heat into hydrogen, researchers are looking to hydrogen for answers to the growing demand for energy storage.

At the Lawrence Livermore National Laboratory (LLNL), researchers are using hydrogen to make lithium ion batteries operate longer and have faster transport rates.

In a response to the need for higher performance batteries, the researchers began by looking for a way to achieve better capacity, voltage, and energy density. Those qualities are primarily determined by the binding between lithium ions and electrode material. Small changes to the structure and chemistry of the electrode can mean big things for the qualities of the lithium ion battery.

The research team from LLNL discovered that by subtly changing the electrode, treating it with hydrogen, lithium ion batteries could have higher capacities and faster transport levels.

“These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes,” said Morris Wang, an LLNL materials scientist and co-author of the paper.

(more…)

Technology Prospects for Future Mobility

review-paperWith the transportation sectors of industrialized countries on the rise and greenhouse gas emissions at an all-time high, many scientists and engineers are searching for the next-generation of transportation. From hybrid to electric to hydrogen, alternative energy sources for vehicles are being explored and tested throughout the scientific community. Now, many are wondering which technology will win in the race between battery- and hydrogen-powered cars.

A recent open access paper published in the Journal of The Electrochemical Society (JES) explores this topic. Authors Hubert A. Gasteiger, Jens-Peter Suchsland, and Oliver Gröger have outlined the technological barriers for next-generation vehicles in “Review—Electromobility: Batteries or Fuel Cells?” This paper comes as part of the recent JES Collection of Invited Battery Review Papers.

The majority of today’s vehicles depend on petroleum-based products in internal combustion engines to operate. The burning of these fuels results in the emission of greenhouse gasses. The majority of these transportation sector greenhouse gas emissions do not come from large modes of transportation such as aircrafts or ships—but are primarily produced by cars, trucks, and SUVs.

In the recently published review, the authors describe the possibilities of extended range electric vehicles, the challenges in hydrogen fuel cell vehicles, and the potential for new materials to be used in these applications.

Read this open access paper and read the rest of the JES Collection of Invited Battery Review Papers.

The Brno Chapter's participants at the 16th ABAF meeting.

The Brno Chapter’s participants at the 16th ABAF meeting.

The spotlight is on the Brno Student Chapter from the Czech Republic! The Brno Student Chapter was established in 2006. The focus of their activities is on batteries, electrochemical conversion and the storage research field.

On September 3, 2015, members of the Brno Chapter presented at the 16th International Conference on Advanced Batteries, Accumulators and Fuel Cells, also known as ABAF. Proceedings of this meeting will be published in an edition of ECS Transactions. In addition, four members have submitted dissertation theses this year, which are scheduled to be presented and defended early 2016. Great job, Brno!

Want your student chapter in the spotlight? Send an email to beth.fisher@electrochem.org to tell us what makes your chapter stand out!