Alvin J. Salkind

Alvin J. Salkind in an undated photo.

“My nature is curiosity and The Electrochemical Society has gone a long way to satisfy my curiosity…” — A. Salkind

About two years ago, ECS began a conversation with Prof. Salkind about his proposal for a revised edition of Alkaline Storage Batteries. In the proposal we presented to John A. Wiley & Sons (our partner in publishing monographs), I said it was from “one of the ECS ‘giants’.”

That was quite true about Dr. Salkind. When I first met him (and ever after), I was engaged by his tremendous intellect, his wide-ranging curiosity, and his still being very much involved with his science.

Prof. Salkind was an emeritus member of ECS, having joined in 1952 as a student. He served the Society very well — as a Chair of our Battery Division and on an innovative committee called the New Technology Subcommittee. He became an ECS Fellow only in 2014, but over the course of his many years of involvement with ECS, he organized symposia, edited proceedings volumes, and chaired many committees.

Alkaline-Storage-Batteries

Cover of the Alkaline Storage Batteries book from 1969

In conjunction with developing a new edition of the Alkaline Storage Batteries book, Prof. Salkind began visiting ECS headquarters. We were immediately drawn in by his still-vibrant enthusiasm for the field and his fascinating anecdotes about other ECS notables in the field: Vladimir Bagotsky, Ernest Yeager, and Vittorio de Nora, among others. He was always willing to teach and to share. We were very fortunate to be able to “capture” Prof. Salkind in a very recent interview at the HQ office.

(Listen to it as a podcast. Watch the video.)

Professor Salkind generously considered ECS his technological home and brought his important monograph to be published by ECS. ECS is grateful to Dr. Salkind for his years of service to the Society and his contributions to the entire battery community; and we thank his family for supporting this remarkable person and sharing him with ECS.

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.Image: PNNL

PNNL scientist Jian Zhi Hu shows a tiny experimental battery mounted in NMR apparatus.
Image: PNNL

While working on a unique lithium-germanide battery, Pacific Northwest National Laboratory (PNNL) researchers knew something was happening inside the battery to dramatically increase its energy storage capacity, but they couldn’t see it. With no way to analyze the reaction occurring, the researchers could not understand the process. In order to solve the problem, the researchers developed a novel nuclear magnetic resonance (NMR) technique to allow insight and understanding of the electrochemical reactions taking place in the battery. Essentially, they have developed an NMR “camera.”

In the end, this leaves the scientists with not only a novel lithium-germanide battery with a distinctly high energy density, but also an NMR device that can be used to examine reactions as they happen inside the battery.

This from PNNL:

By using the NMR process to look inside the battery and observe this reaction as it happened, the scientists found a way to protect the germanium from expanding and becoming ineffective after it takes on lithium. The secret proved to be forming the germanium into tiny “wires” and encasing them in small, protective carbon tubes to limit the expansion. This technique significantly stabilizes battery performance. Without embedding germanium in carbon tubes, a battery performs well for a few charging-discharging cycles, but fades rapidly after that. Using the “core-shell” structure, however, the battery can be discharged and charged thousands of times.

(more…)

Engineering Stretchable Batteries

Recently, scientists have been looking at the Japanese paper-folding art of origami as inspiration for novel flexible energy-storage technologies. While there have been breakthroughs in battery flexibility, there has yet to be a successful development of stretchable batteries. Now, researchers from Arizona State University have unveiled a way to make batteries stretch, yielding big potential outcomes for wearable electronics.

The Arizona State University research team includes ECS member and advisor of the ECS Valley of the Sun student chapter, Candace K. Chan. Chan and the rest of the team were inspired by a variation of origami called kirigami when developing this new generation of lithium-ion batteries.

According to the researchers, the new battery can be stretched more than 150 percent of its original size and still maintain full functionality.

Printable Functional Materials

Potential technical applications of printable functional inks.

The video and information in this post relate to an ECS Journal of Solid State Science and Technology focus issue called: Printable Functional Materials for Electronics and Energy Applications.

(Read/download the focus issue now. It’s entirely free.)

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin-film transistors, sensors, thin-film photovoltaics, fuel cells, capacitors, and batteries. Significant progress has been made in the area of printable functional organic and inorganic materials including conductors, semiconductors, and dielectric and luminescent materials.

These new printable functional materials have and will continue to enable exciting advances in printed electronics and energy devices. Some examples are printed amorphous oxide semiconductors, organic conductors and semiconductors, inorganic semiconductor nanomaterials, silicon, chalcogenide semiconductors, ceramics, metals, intercalation compounds, and carbon-based materials.

A special focus issue of the ECS Journal of Solid State Science and Technology was created about the publication of state-of-the-art efforts that address a variety of approaches to printable functional materials and device. This focus issue, consisting of a total of 15 papers, includes both invited and contributed papers reflecting recent achievements in printable functional materials and devices.

The topics of these papers span several key ECS technical areas, including batteries, sensors, fuel cells, carbon nanostructures and devices, electronic and photonic devices, and display materials, devices, and processing. The overall collection of this focus issue covers an impressive scope from fundamental science and engineering of printing process, ink chemistry and ink conversion processes, printed devices, and characterizations to the future outlook for printable functional materials and devices.

The video below show demonstrates Inkjet Printed Conductive Tracks for Printed Electronic conducted by S.-P. Chen, H.-L. Chiu, P.-H. Wang, and Y.-C. Liao, Department of Chemical Engineering, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.

Step-by-step explanation of the video:

For printed electronic devices, metal thin film patterns with great conductivities are required. Three major ways to produce inkjet-printed metal tracks will be shown in this video.

(more…)

Dr. Alvin Salkind Dies at Age 87

Dr. Alvin Salkin with Roque Calvo

Dr. Alvin Salkind with ECS Executive Director Roque Calvo at ECS headquaters May 19, 2015.

We have some very sad news. Long time ECS member, Dr. Alvin Salkind has died. He joined The Electrochemical Society in 1953 and continued as a member in good standing for more than 62 years.

This message from his family:

Dear ECS Society members,

We are sad to let you know that our father, Dr. Alvin J. Salkind, a fellow of the Electrochemical Society, passed away on Tuesday at the age of 87. Funeral services will be on Friday, June 12 at 10am at the Mather-Hodge Funeral Home, 40 Vandeventer Ave., Princeton NJ 08542. All are welcome to join us to celebrate his life and career.

James and Susanne

The first thing you need to know is that Dr. Salkind literally wrote the books on electrochemistry and alkaline batteries: Techniques of Electrochemistry Vol 1-3 with Ernest Yeager and Alkaline Storage Batteries with S. Uno Falk.

The ECS Digital Library will give you an idea of how important he was.

To say he was a friend of the Society is an understatement. He lived near the home office and made frequent visits. The picture above is from his latest visit. He was just here May 19th so Roque Calvo, ECS Executive Director, could interview him on video about his life (we’ll have that video soon). He was a pleasure and had lots of great stories.

Below is just a little from notes we gathered from the research we dug up from various sources about Dr. Salkind as we planned for the video interview:

(more…)

ECS treasurer E.J. Taylor (Founder & CTO of Faraday Technology), recently forwarded us a story from The Economist featuring ECS members and their contributions to research and development on the ever-improving lithium-ion battery.

Since the battery’s commercialization by Sony in the early 1990s, the lithium-ion battery has improved to produce better laptops, smartphones, and even power electric cars.

Vincent Battaglia, ECS member and head of the Electrochemical Technologies Group at Lawrence Berkeley National Laboratory, states that the lithium-ion battery “is almost an ideal battery.” With its light weight and recharging capabilities, the battery has received much attention from researchers globally.

(more…)

The high-performance 3D microbattery is suitable for large-scale on-chip integration.Image: Engineering at Illinois

The high-performance 3D microbattery is suitable for large-scale on-chip integration.
Image: Engineering at Illinois

Engineers from the University of Illinois at Urbana-Champaign’s College of Engineering have developed a high-performance 3D microbattery applicable for large-scale on-chip integration with microelectronic devices.

“This 3D microbattery has exceptional performance and scalability, and we think it will be of importance for many applications,” said Paul Braun, professor of materials science and engineering at Illinois.

“Micro-scale devices typically utilize power supplied off-chip because of difficulties in miniaturizing energy storage technologies. A miniaturized high-energy and high-power on-chip battery would be highly desirable for applications including autonomous microscale actuators, distributed wireless sensors and transmitters, monitors, and portable and implantable medical devices.”

(more…)

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.Source: Maryland NanoCenter

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.
Source: Maryland NanoCenter

ECS student member Fudong Han and former member Chunsheng Wang have developed a novel solid state battery comprised of just one material that can both move and store electricity.

This new battery could prove to be revolutionary in the area of solid state batteries due to its incorporation of electrodes and electrolytes into a single material.

“Our battery is 600 microns thick, about the size of a dime, whereas conventional solid state batteries are thin films — forty times thinner. This means that more energy can be stored in our battery,” said Han, the first author of the paper and a graduate student in Wang’s group.

This from the University of Maryland:

The new material consists of a mix of sulfur, germanium, phosphorus and lithium. This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to this electrolyte to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. Like a little bit more sugar added at each end of a cookie-cream mixture, the carbon merely helps draw the electricity from side to side through the material.

(more…)

Tesla Reveals Battery to Power Homes

Elon Musk has just announced the new Tesla Energy division, which aims to move the energy grid away from dependency on fossil fuels and toward renewables.

The new line features a suite of rechargeable lithium-ion batteries—similar to the batteries used in the Tesla vehicles—for homes, businesses, and utilities. The company states that the battery can store renewable energy at a residential level for load shifting, backup power, and self-consumption of solar power generation.

During his announcement, Musk stated that this move could help change the “entire energy infrastructure of the world.”

The batteries have the ability to charge during non-peak energy usage hours and provide the home with energy during peak usage hours. The batteries are available at 10kWh or 7kWh, with a selling price of $3,500 and $3,000 respectively.

To put this into perspective, an energy comparison firm estimates that 1kWh can produce enough power for a full washing machine cycle.

Tesla hopes that this new line of batteries gets us closer to zero emission power generation and fosters a clean energy ecosystem.

Breaking Dependence on Fossil Fuels

Abruna_Hector_D“You’re not going to solve the energy problem by separating paper and plastic. We need to transition out of our dependency on fossil fuels and into renewables. As a society, it is really up to us to change.”

ECS Fellow Héctor D. Abruña recently spoke on the importance of developing better batteries to change the energy landscape at a Charter Day Weekend lecture at Cornell University.

The energy infrastructure as it exists today cannot maintain in its current form in the years to come. The United Nations expects the world’s population to reach 9.6 billion by 2050. Compare this to the current 7.2 billion population and the current issues with the energy infrastructure and the need for change becomes quite apparent.

Fortunately, Abruña and scientists like him are working to move us toward a more energy efficient and sustainable future through developments in fuel cells and batteries, which will power energy efficient and environmentally safe cars, as well as reshape the energy infrastructure itself.

“If we have any hope of solving the energy problems, we need better energy conversion and storage,” said Abruña.

(more…)