A New Generation of Electric Car Battery

Scientists out of the University of Waterloo are one step closer to inventing a cheaper, lighter and more powerful rechargeable battery for electric vehicles. At the heart of this discovery lies a breakthrough in lithium-sulfur batteries due to an ultra-thin nanomaterial.

This from the University of Waterloo:

Their discovery of a material that maintains a rechargeable sulfur cathode helps to overcome a primary hurdle to building a lithium-sulfur (Li-S) battery. Such a battery can theoretically power an electric car three times further than current lithium-ion batteries for the same weight – at much lower cost.

(more…)

New Smartphone Battery Charges in Seconds

The 2015 Consumer Electronics Show (CES) is coming to a close, but not before showcasing a huge breakthrough in battery technology.

The Israeli start-up company StoreDot showed off their new product at CES: a smartphone battery that can charge in just seconds.

StoreDot’s battery charges 100 times faster than the present lithium-ion batteries and can last about five hours on a two minute charge.

However, the battery cannot be retrofitted to existing devices because most phones would be fried by the 40 amps of electricity. Instead, StoreDot’s battery is completely new – containing special synthesized organic molecules.

“We have reactions in the battery that are non-traditional reactions that allow us to charge very fast, moving ions from an anode to a cathode at a speed that was not possible before we had these materials,” Doron Myersdorf, the company’s chief executive, told BBC.

(more…)

Toyota is looking to propel the future of the fuel cell vehicle with the recent announcement that they will be granting royalty-free use to thousands of their patents.

“I’m happy and extremely proud to announce to you today that Toyota will grant royalty-free use of all 5,680 of our fuel cell patents, including pending patents,” said Senior Vice President of Toyota’s Automotive Operations, Bob Carter, on January 5 at the Consumer Electronics Show (CES).

The patents are to be used by companies manufacturing and selling fuel cell vehicles. Carter stated that these patents – which are critical to the development and production of fuel cells vehicles – will be available through 2020.

(more…)

First Hybrid-Electric Airplane (Video)

hybrid-electric-airplane

An aircraft with a parallel hybrid engine – the first ever to be able to recharge its batteries in flight – has been successfully tested in the UK, an important early step towards cleaner, low-carbon air travel.
Credit: University of Cambridge

The United Kingdom is taking an important step towards cleaner, low-carbon air travel with the first successfully tested airplane with a parallel hybrid-electric engine. The novel aircraft is the first of its kind due to the ability to recharge its batteries while in flight.

This development comes out of the University of Cambridge in conjunction with Boeing, where they have worked to successfully develop a parallel hybrid-electric propulsion system for an aircraft that will use up to 30 percent less fuel than a comparable plane with a petrol-only engine.

To create the plane, the researches used the same basic principals as in a hybrid car. The aircraft uses a 4-stroke piston engine and an electric motor/generator. When maximum power is required – i.e. during takeoff – the engine and electric motor work together to power the plane. Once cruise height is reached, the motor switches to generator mode to recharge its batteries.

(more…)

Member Spotlight – Stephen Harris

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.Image: Rich Saykally, Berkeley Labs

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.
Image: Rich Saykally, Berkeley Labs

The Electrochemical Society’s Stephen Harris, along with a team of researchers from  Berkeley Lab, have found a possible avenue to a better electrolyte for lithium-ion batteries.

Harris – an expert on lithium-ion batteries and chemist at Berkeley Lab’s Materials Science Division – believes that he and his team have unveiled something that could lead to applying lithium-ion batteries to large-scale energy storage.

Researchers around the world know that in order for lithium-ion batteries to store electrical energy for the gird or power electric cars, they must be improved. The team at Berkeley decided to take on this challenge and found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrode, which has provided a better understanding of the liquid electrolyte.

Previous simulations have predicted a tetrahedral solvation structure for the lithium-ion electrolyte, but the new study yields different results.

(more…)

Turning Hydrogen Into “Graphene”

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.Credit: Carnegie Science

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.
Credit: Carnegie Science

A new study shows remarkable parallels between hydrogen and graphene under extreme pressures.

The study was conducted by Carnegie’s Ivan Naumov and Russell Hemley, and can be found in the December issue of Accounts of Chemical Research.

Because of hydrogen’s simplicity and abundance, it has long been used as a testing ground for theories of the chemical bond. It is necessary to understand chemical bonding in extreme environments in order to expand our knowledge of a broad range of conditions found in the universe.

It has always been difficult for researchers to observe hydrogen’s behavior under very high pressure, until recently when teams observed the element at pressures of 2-to-3.5 million times the normal atmospheric pressure.

Under this pressure, it transforms into an unexpected structure that consists of layered sheets, rather than close-packed metal – which had been the prediction of scientists many years ago.

(more…)

Helping Medicine with Graphene Quantum Dots

Researchers from the University of Sydney have recently published their findings that quantum dots made of graphene can improve bio-imaging and LEDs.

The study was published in the journal Nanoscale, where the scientists detailed how activating graphene quantum dots produced a dot that would shine nearly five times bright than the conventional equivalent.

Essentially, the dots are nano-sized semiconductors, which are fluorescent due to their surface properties. However, this study introduces the utilization of graphene in the quantum dot, which produces an extra-bright dot that has the potential to help medicine.

(more…)

New Coating to Make Batteries Safer

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).Credit: Bryan Laulicht/MIT

At left, a typical button battery; at right, a button battery coated with quantum tunneling composite (QTC).
Credit: Bryan Laulicht/MIT

We’ve heard a lot about innovation and improvements in the field of battery recently, but safety seems to have been put on the back-burner in lieu of creating a more powerful battery. This issue has now been addressed through funding from the National Institutes of Health in order to make technological breakthroughs in safety innovations for batteries.

According to the National Capital Poison Center, more than 3,500 people of all ages swallow button batteries every year in the United States. In order to combat the permanent injury that this could cause, researchers from MIT, Brigham and Women’s Hospital, and Massachusetts General Hospital have come together to create a coating that prevents batteries from conducing electricity after being swallowed – thereby causing no damage to the gastrointestinal tract.

Prior to this innovation, once a battery was swallowed, it would start to interact with the saliva and create an electric current. This current produces hydroxide, which causes damages to tissue. If not treated, this can cause serious injury within a few hours.

(more…)

Norwegian entrepreneur, Jostein Eikeland, is finally unveiling the development his has been working on in secret for the past decade in hopes to jolt the world of energy storage.

Eikeland and his company Alevo plan to reveal a battery that will last longer and cost far less than the current rival technologies. To do this, they have developed a technology that is to store excess electricity generated by power plants.

This from Reuters:

The company has created what it calls GridBanks, which are shipping containers full of thousands of battery cells. Each container can deliver 2 megawatts of power, enough to power up to 1,300 homes for an hour. The batteries use lithium iron phosphate and graphite as active materials and an inorganic electrolyte – what Eikeland called the company’s “secret sauce” – that extends longevity and reduces the risk of burning. They can be charged and discharged over 40,000 times, the company said.

(more…)

Glasgow Conferecne

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV

The ECS Conference on Electrochemical Energy Conversion & Storage with SOFC–XIV is an international conference convening in Glasgow, Scotland, July 26-31, 2015. It is devoted to all aspects of research, development, and engineering of solid oxide fuel cells, batteries, and low-temperature fuel cells, electrolyzers, and redox flow cells.

This international conference will bring together scientists and engineers to discuss both fundamental advances and engineering innovations.

See the Call for Papers for detailed information about the symposia, manuscript submission requirements, and financial assistance.

Submit your abstract here.

Be a sponsor or exhibitor.