Bruce Weisman, chemistry and materials science professor at Rice University, is internationally recognized for his contributions to the spectroscopy and photophysics of carbon nanostructures. He is a pioneer in the field of spectroscopy, leading the discovery and interpretation of near-infrared fluorescence for semiconducting carbon nanotubes. Aside from his work at Rice University, Weisman is also the founder and president of Applied NanoFluorescence.

Weisman is currently the Division Chair of the ECS Nanocarbons Division, which will be celebrating 25 years of nanocarbons symposia at the upcoming 229th ECS Meeting in San Diego, CA, May 2016. Since starting in 1991, the symposia has totaled 5,853 abstracts at ECS biannual meetings, with Nobel Laureate Richard Smalley delivering the inaugural talk.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Glucose monitoring has had a long history with electrochemical science and technology. While ECS Honorary Member Adam Heller’s continuous glucose monitoring system for diabetes management may be the first innovation that comes to mind, there is a new electrochemical bio-sensing tool on the horizon.

(WATCH: ECS Masters – Adam Heller)

Researchers have combined graphene with a tiny amount of gold to enhance the wonder material’s properties and develop a flexible skin patch to monitor blood glucose and automatically administer drugs as needed.

This from Extreme Tech:

[As] cool as a non-invasive blood-glucose monitor is, it’s nearly as revolutionary as what comes next: treatment. The patch is studded with “microneedles” that automatically cap themselves with a plug of tridecanoic acid. When high blood-glucose levels are detected, the patch heats a small heater on the needles which deforms the plug and allows the release of metformin, a common drug for treatment of type 2 diabetes. Cooling naturally restores the plug and stops drug release.

Read the full article.

This development is a huge stepping stone in the transformation of graphene as a laboratory curiosity to a real product. While it has taken a while due to the questions of the new material’s intrinsic properties, researchers believe that graphene-based products could soon be hitting the market.

Do you want to be forever externalized? Then look no further than this new quartz coin that can store the history of humankind for 14 billion years.

As if the previous breakthrough of quartz glass storage that yielded a self-life of 300 million years wasn’t enough, the new research take nanotechnology to a whole new level.

To understand exactly how long 14 million years is, check out these stats via Futurism:

  • Age of Earth: 4.534 billion years
  • Age of the Universe: 13.82 billion years

The research comes out of Southampton University, where the group has essentially developed a way to fit on just one sliver of nanostructured quartz 350TB of information.

This form Futurism:

The technique uses femtosecond laser pulses to write data in the 3D structure of quartz at the nanoscale. The pulses create three layers of nanostructred dots, each just microns above the other. The changes in the structure can be read by interrogating the sample with another pulse of light and recording the orientation of the waves after they’ve passed through.

Read the full article.

At the very least, this development in 5D storage will change the way we archive historical information.

Graphene Simplifies Ice Removal

Graphene ice removal

Through a nanoribbon-infused epoxy, researchers were able to remove ice through Joule heating.
Image: Rice University

Graphene, better known as the wonder material, has seemingly limitless possibilities. From fuel cells to night-vision to hearing, there aren’t many areas that graphene hasn’t touched. Now, researchers from Rice University and transforming graphene for uses in air travel safety.

James Tour, past ECS lecturer and molecular electronics pioneer, has led a team in developing a thin coating of graphene nanoribbons to act as a real-time de-icer for aircrafts, wind turbines, and other surfaces exposed to winter weather.

(MORE: Read “High-Density Storage, 100 Times Less Energy“)

Through electrothermal heat, the graphene nanoribbons melted centimeter-thick ice on a static helicopter rotor blade in a -4° Fahrenheit environment.

This from Rice University:

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Read the full article.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

The coating may also protect aircrafts from lightning strikes and provide and extra layer of electromagnetic shielding.

World’s Most Expensive Material

The world’s most expensive material is being created in a lab and it’s going for $33,000 per 200 micrograms. To put that in perspective, that’s an astonishing $4.2 billion an ounce.

The novel material consists of molecular units called endohedral fullerenes, which are essentially a cage of carbon atoms containing nitrogen atoms.

Developers and scientists behind the material are focused on implementing the endohedral fullerenes into the development of a small, portable atomic clock. The atomic clock is the most accurate time-keeping system in the world and could assist in the accuracy of everything from a GPS to an automatic car.

“Imagine a minaturised atomic clock that you could carry around in your smartphone,” says Kriakos Porfyrakis, scientist working on the development of the material. “This is the next revolution for mobile.”

Aside from impacting cellphone technology, Porfyrakis expects the material to change transportation in a big way.

ICYMI: Learn about the early history of the Buckyball.

“There will be lots of applications for this technology,” says Lucius Cary, director of Oxford Technology SEIS fund. “The most obvious is in controlling autonomous vehicles. If two cars are coming towards each other on a country lane, knowing where they are to within 2m is not enough but to 1mm it is enough.”

Rusnanoprize Awarded to ECS Members

id41860Two ECS members were recently awarded the 2015 RUSNANOPRIZE Nanotechnology International Prize for their work in developing nanostructured carbon materials, which have facilitated the commercialization and wide-use of supercapacitors in energy storage, automotive, and many other industries. The organization honored Yury Gogotsi and Patrice Simon for their exemplary research in this field.

The RUSNANOPRIZE Nanotechnology International Prize, established in 2009, is presented annually to those working on nanotechnology projects that have substantial economic or social potential. The prize is aimed to promote successful commercialization of novel technology and strengthening collaboration in the field of nanotechnology.

Yury Gogotsi is a professor at Drexel University and director of the Anthony J. Drexel Nanotechnology Institute. Among his most notable accomplishments, Gogotsi was a member of a team that discovered a novel family of two-dimensional carbides and nitrides, which have helped open the door for exceptional energy storage devices. Additionally, Gogotsi’s hand in discovering and describing new forms of carbon and the development of a “green” supercapacitor built of environmentally friendly materials has advanced the field of energy technology.

Gogotsi is a Fellow of ECS and is currently the advisor of the Drexel ECS Student Chapter.

Patrice Simon is a professor at Paul Sabatier University. As a materials scientist and electrochemist, Simon has special interest in designing the next generation of batteries and supercapacitors. As the leader of the French Network on Electrochemical Energy Storage, Simon is making strides in developing next-gen technology through combining 17 labs and 15 companies in an effort to apply novel principals to issues in energy storage and technology. As an internationally recognized leader in the field of nanotechnology for energy storage, Simon’s work focuses on benefiting the entire energy storage industry.

Simon has been a member of ECS for 15 years.

ICYMI: Find other ECS researchers are doing in the world of nanocarbons.

Ingestible Sensor to Improved Diagnostics

Researchers from MIT have unveiled new opportunities in diagnostics through the development of an ingestible sensor with the ability to continuously monitor vital signs. The device, which measures heart rate and breathing from within the gastrointestinal track, has the potential to offer beneficial assessment of trauma patients, soldiers in battle, and those with chronic illness.


“Through characterization of the acoustic wave, recorded from different parts of the GI tract, we found that we could measure both heart rate and respiratory rate with good accuracy,” says Giovanni Traverso, one of the lead authors of the study.

The development of pulse sensors such as this are beginning to outpace the traditional stethoscope. However, the pulse sensors that currently exist wrest on the patient’s skin, which is problematic for those with skin sensitivity such as burn victims.

(more…)

Fullerenes Inhibit Infection by Ebola Virus

A new breakthrough in biotechnology could have the potential to eradicate the Ebola virus infection. Through the construction of a supermolecule made up of 13 fullerenes, a new door has been opened in the world of antiviral agents.

A team from the Universidad Complutense de Madrid/IMDEA-Nanociencia (UCM) has designed a giant fullerene molecule, covered in carbohydrates. When the team tested the new supermolecule on an artificial Ebola virus model, the researchers saw a result that stops cell infection of Ebola.

The study was led by ECS member and UCM professor Nazario Martín.

“Fullerenes are hollow cages exclusively formed by carbon atoms,” says Martín.

This from UCM:

These molecules decorated with specific carbohydrates (sugars) present affinity by the receptor used as an entry point to infect the cell and act blocking it, thus inhibiting the infection. Researchers employed an artificial Ebola virus by expressing one of its proteins, envelope protein GP1, responsible of its entry in the cells. In a model in vitro, this protein is covering a false virus, which is able of cell infection but not of replication.

(more…)

Solar Cells Take Inspiration from Art

One of the more common issues with solar cell efficiency is their inability to move with the sun as it crosses the sky. While large scale solar panels can be fitted with bulky motorized trackers, those with rooftop solar panels do not have that luxury. In an effort to solve this issues, researchers are drawing some inspiration from art in their mission toward higher solar efficiency.

Scientists are applying some of the shapes and designs from the ancient art of kirigami—the Japanese art of paper cutting—to develop a solar cell that can capture up to 36 percent more energy due to the design’s ability to grab more sun.

“The design takes what a large tracking solar panel does and condenses it into something that is essentially flat,” said Aaron Lamoureux, a doctoral student in materials science and engineering and first author on the paper.

In the United States alone, there are currently over 20,000 MW of operational solar capacity. Nearly 640,000 U.S. homes have opted to rely on solar power. However, if the home panels were able to follow the sun’s movement on a daily basis, we could see a dramatic increase in efficiency and usage.

(more…)

Big Energy Boost for Small Electronics

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.Image: MIT

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.
Image: MIT

With the recent surge in wearable electronics, researchers and looking for a way to get larger amounts of power to these tiny devices. Due to the limited size of these devices, it is difficult to transmit data via the small battery.

Now, MIT researchers have found a way to solve this issue by developing an approach that can deliver short but big bursts of power to small devices. The development has the potential to affect more than wearable electronics through its ability to deliver high power in small volumes to larger-scale applications. The key to this new development is the team’s novel supercapacitor.

This from MIT:

The new approach uses yarns, made from nanowires of the element niobium, as the electrodes in tiny supercapacitors (which are essentially pairs of electrically conducting fibers with an insulator between). In this new work, [Seyed M. Mirvakili] and his colleagues have shown that desirable characteristics for such devices, such as high power density, are not unique to carbon-based nanoparticles, and that niobium nanowire yarn is a promising an alternative.

(more…)

  • Page 4 of 5