Global estimates report that nearly 600 million people are sickened by a foodborne illness annually, resulting in over 400,000 deaths. In the United States alone, foodborne illnesses such as Salmonella and E. coli result in an overall cost of $77 billion per year.

Researchers from the Washington State University (WSU) are looking to help put an end to the spread of foodborne illnesses with the development of a new and improved biosensor.

We’ve see in in the recent food recalls; harmful pathogens in food are almost always discovered after people have become sick. The work from WSU, led by ECS member Yuehe Lin, focuses on detecting and amplifying the signal of food pathogens, reducing the risk of small (but dangerous) pathogens to go undetected.

(more…)

The landscape of Bangladesh is lined with tin huts and a practically invisible energy grid. Over 70 percent of the country’s population lives without power, and in a location that approaches 45°C (113°F) in the summer months, that could mean unbearable and dangerous living conditions.

Enter the zero-electricity cooler: Eco-Cooler. Built with re-purposed bottles, the panels use the simple concept that as hot air passes through the wide end of the bottle, it will cool as it is compressed and pushed out of the narrow end into the home. So far, families have seen temperature drops of five degrees after using the devices.

“After initial tests, blueprints of the Eco-Cooler were put up online for everyone to download for free.” Sayed Gousul Alam Shaon, managing partner of the project said in a release. “Raw materials are easily available, therefore, making Eco-Coolers a cost-effective and environmentally-friendly solution.”

Making the New Silicon

Shown here is the smallest laptop power adapter ever, made using GaN transistors.
Image: Cambridge Electronics

Recent discussions in the electronics industry have revolved around the future of technology in light of the perceived end of Moore’s law. But what if the iconic law doesn’t have to end? Researchers from MIT believe they have exactly what it takes to keep up with the constantly accelerating pace of Moore’s law.

More efficient materials

For the scientists, the trick is in the utilization of a material other than silicon in semiconductors for power electronics. With extremely high efficiency levels that could potentially reduce worldwide energy consumption, some believe that material could be gallium nitride (GaN).

MIT spin-out Cambridge Electronics Inc. (CEI) has recently produced a line of GaN transistors and power electronic circuits. The goal is to cut energy usage in data centers, electric cars, and consumer devices by 10 to 20 percent worldwide by 2025.

Semiconductors shaping society

Since its discovery in 1947, the transistor has helped make possible many wonders of modern life – including smartphones, solar cells, and even airplanes.

Over time, as predicted by Moore’s law, transistors became smaller and more efficient at an accelerated pace – opening doors to even more technological advancements.

(more…)

The Death of Moore’s Law

The future of technology

The iconic Moore’s law has guided Silicon Valley and the technology industry at large for over 50 years. Moore’s prediction that the number of transistors on a chip would double every two years (which he first articulated at an ECS meeting in 1964) bolstered businesses and the economy, as well as took society away from the giant mainframes of the 1960s to today’s era of portable electronics.

But research has begun to plateau and keeping up with the pace of Moore’s law has proven to be extremely difficult. Now, many tech-based industries find themselves in a vulnerable position, wondering how far we can push technology.

Better materials, better chips

In an effort to continue Moore’s law and produce the next generation of electronic devices, researchers have begun looking to new materials and potentially even new designs to create smaller, cheaper, and faster chips.

“People keep saying of other semiconductors, ‘This will be the material for the next generation of devices,’” says Fan Ren, professor at the University of Florida and technical editor of the ECS Journal of Solid State Science and Technology. “However, it hasn’t really changed. Silicon is still dominating.”

Silicon has facilitated the growth predicted by Moore’s law for the past decades, but it is now becoming much more difficult to continue that path.

(more…)

Science of Lightsabers

May the 4th be with you

Whether you’re a Star Wars superfan or find yourself lost when the conversation turns to discussions of the feasibility of the Death Star, you can probably identify the epic space series’ iconic lightsaber. The lightsaber has become one of the most recognizable images in popular culture, but is it purely fiction or could it be a reality?

According to the Star Wars books, lightsabers are pretty complex devices but essentially boil down to a few key elements: a power source and emitter to create light, a crystal to focus the light into a blade, a blade containment field, and a negatively charged fissure. In the Star Wars galaxy, a lightsaber creates energy, focuses it, and contains it.

But that’s fiction and those ideas are not in line with current science and technology. So how could we build a lightsaber with the tools we have today?

Many people look initially to laser technology when discussing a practical lightsaber. It’s unrealistic to say that light could be the source of the blade seeing as light has no mass (creating a pretty insufficient weapon), but lasers could be an alternative. It may seem contradictory to say that lasers could be the blade in a lightsaber when lasers are essentially light focused to a very fine point, but as Looper puts it, light is to a laser what a tree is to paper.

(more…)

Remembering Harry Kroto

Harry KrotoA giant among giants

Harry Kroto, distinguished chemist and pioneering nanocarbons researcher, passed away on April 30, 2016 at the age of 76. Kroto, a giant among giants, made an immense impact not only on ECS and its scientific discipline – but the world at large.

“Harry Kroto’s passing is a great loss to science and society as a whole,” says Bruce Weisman, professor at Rice University and division chair of the ECS Nanocarbons Division. “He was an exceptional researcher whose 1985 work with Rick Smalley and Bob Curl launched the field of nanocarbons research and nanotechnology.”

Revolutionizing chemistry

That work conducted by Kroto, Smalley, and Curl yielded the discovery of the C60 structure that became known as the buckminsterfullerene (or the “buckyball” for short). Prior to this breakthrough, there were only two known forms of pure carbon: graphite and diamond. The work opened a new branch in chemistry with unbound possibilities, earning the scientists the 1996 Nobel Prize in Chemistry.

The field of nanocarbons and fullerenes, since the discovery by Kroto and company, has evolved into an area with almost limitless potential. The applications for this scientific discipline are wide-ranging – from energy harvesting to sensing and biosensing to biomedical applications and far beyond. Research in this field continues to fill the pages of scholarly journals, making possible innovations that were not even conceived before the seminal 1985 work.

(more…)

Texting while walkingSmartphones are amazing little bundles of electrochemistry. From the sensors that pick up your touch and analyze your voice to the battery that is small and powerful enough to provide enough power to run applications on demand – the innovative science behind smartphones has changed the lives of people around the world.

But sometimes those changes are not completely positive. With increased dependence on smartphones, many people now roam the sidewalk with their nose buried in their phones. According to The Wall Street Journal, the number of distracted pedestrians using cellphones is up 124 percent from 2010. Some researchers are even blaming portable electronic gadgets for 10 percent of pedestrian injuries and a half-dozen deaths each year.

In Germany, these distracted pedestrians have been deemed “sombies,” or “smartphone zombies.” And the German government isn’t just looking to throw out a new buzzword, they’re also seeking to solve this issue.

According to reports from The Local, the city of Augsburg recently installed rows of LED lights into the sidewalk that can sense when distracted pedestrians are approaching and give off a bright flash of red to warn them to not mindlessly wander into the street.

“We realized that the normal traffic light isn’t in the line of sight of many pedestrians these days,” said Tobias Harms of the Augsburg city administration in an interview with The Augsburger Allgemeine. “So we decided to have an additional set of lights – the more we have, the more people are likely to notice them.”

Improving Energy Storage

Nanoparticles have been central to many recent developments, including computing, communications, energy, and biology. However, because nanoparticles are hard to observe, it’s often difficult to pick the best shapes and sizes to perform specific tasks at optimal capacity.

That may be a problem no longer thanks to research out of Stanford University, where researchers gazed inside phase-changing nanoparticles for the first time – allowing them to understand how shape and crystallinity can have dramatic effects on performance.

Practically, this means that the design of energy storage materials could begin to change.

Take the lithium-ion battery, which stores and releases energy due to the electrode’s ability to sustain large deformations over several charge and discharge cycles without degrading. By nanosizing the electrode, researchers recently improved upon the efficiency process.

(more…)

Nanostructures

Nanostructures on the surface of the fabric.
Image: Queensland University of Technology

Oil spills have had an extensive history of disrupting the environment, killing ecosystems, and displacing families. Impacts of massive oil spills are still felt in many parts of the world, including the undersea spill at the BP oil rig in the Gulf of Mexico that dumped an approximate 39 million gallons of oil into the gulf.

But what if these devastating oil spills could be easily cleaned up with a piece of fabric rooted in electrochemistry?

That may be a reality soon thanks to researchers at Queensland University of Technology (QUT). According to a release, the QUT researchers have developed a multipurpose fabric covered with semi-conducting nanostructures that can both mop up oil and degrade organic matter when exposed to light.

(READ: “Superhydrophobic Fabrics for Oil/Water Separation Based on the Metal-Organic Charge-Transfer Complex CuTCNAQ“)

The fabric, which repels water and attracts oil, has already has promising preliminary results. In the early stages of research, the scientists have already been able to mop up crude oil from the surface of both fresh and salt water.

(more…)

Artificial limbs have experience tremendous evolution in their long history. Throughout history, we’ve gone from the peg leg of the Dark Ages to technologically advanced modern day prosthesis that mimic the function of a natural limb. However, most prosthesis still lack a sense of touch.

Zhenan Bao, past ECS member and chemical engineer at Stanford University, is at the forefront of the research looking to change that.

(MORE: Read Bao’s past meeting abstracts in the ECS Digital Library for free.)

Recently on NPR’s All Things Considered, Bao described her work in developing a plastic artificial skin that can essentially do all the things organic skin can do, including sensing and self-healing.


The self-healing plastic Bao uses mimics the electrical properties of silicon and contains a nano-scale pressure sensor. The sensor is then connected to electrical circuits that connect to the brain, transmitting the pressure to the brain to analyze as feeling.

Additionally, the skin is set to be powered by polymers that can turn light into electricity.

While there is still much work to be done, Bao and her colleagues believe that this product could help people who have lost their limbs regain their sense of touch.