A team lead by Bradley Bundy, chemical engineering associate professor, is paving the way for new life-saving vaccine technology.Image: Mark A. Philbrick

A team lead by Brad Bundy, chemical engineering associate professor, is paving the way for new life-saving vaccine technology.
Image: Mark A. Philbrick

When viruses emerge—spreading in a rapid and extensive way—researchers must scramble to create life-saving vaccines. At Brigham Young University, researchers are working to speed up that process.

A team of chemical engineers has devised a way to create machinery for vaccine production en masse, freeze drying the produced vaccines and stockpiling them for future use. This development could aid in relief efforts when new viruses hit populations, allowing researchers to rapidly produce vaccines.

“You could just pull it off the shelf and make it,” says Brad Bundy, senior author of the study. “We could make the vaccine and be ready for distribution in a day.”

This from Brigham Young University:

Bundy’s idea is a new angle on the emerging method of ‘cell-free protein synthesis,’ a process that combines DNA to make proteins needed for drugs (instead of growing protein in a cell). His lab is creating a system where the majority of the work is done beforehand so vaccine kits can be ready to go and be activated at the drop of a dime.

(more…)

Ingestible Sensor to Improved Diagnostics

Researchers from MIT have unveiled new opportunities in diagnostics through the development of an ingestible sensor with the ability to continuously monitor vital signs. The device, which measures heart rate and breathing from within the gastrointestinal track, has the potential to offer beneficial assessment of trauma patients, soldiers in battle, and those with chronic illness.


“Through characterization of the acoustic wave, recorded from different parts of the GI tract, we found that we could measure both heart rate and respiratory rate with good accuracy,” says Giovanni Traverso, one of the lead authors of the study.

The development of pulse sensors such as this are beginning to outpace the traditional stethoscope. However, the pulse sensors that currently exist wrest on the patient’s skin, which is problematic for those with skin sensitivity such as burn victims.

(more…)

Treating Infection with Electrical Stimulation

The electric current was able to kill almost all drug resistant bacterium within 24 hours.Image: Nature

The electric current was able to kill almost all drug resistant bacterium within 24 hours.
Image: Nature

A new alternative to traditional antibiotics is on the horizon. Through the application of electrical stimulation, researchers from Washington State University have found a way to kill drug resistant bacterium without the need for antibiotics.

“We have been doing fundamental research on this for many years, and finally, we are able to transfer it to technology,’’ says Haluk Beyenal, ECS member and co-author of the study. “It’s really exciting.’’

While these results are groundbreaking for biomedical science, the idea of treating infection through electrical stimulation is not new. Researchers have been attempting to do this for years, but have not been able to perfect the method.

Because of this, antibiotics have become the most effective and preferred treatment choice for infections. However, as antibiotic use increases, the bacteria being treated begin to adapt. Drug resistant strains then begin to form, which infect at least two million people a year in the United States alone. From those two million, about 23,000 people die annually as a direct result. With this, researchers see the need to find an alternative form of treatment for bacterial infection.

(more…)

Posted in Technology

Fullerenes Inhibit Infection by Ebola Virus

A new breakthrough in biotechnology could have the potential to eradicate the Ebola virus infection. Through the construction of a supermolecule made up of 13 fullerenes, a new door has been opened in the world of antiviral agents.

A team from the Universidad Complutense de Madrid/IMDEA-Nanociencia (UCM) has designed a giant fullerene molecule, covered in carbohydrates. When the team tested the new supermolecule on an artificial Ebola virus model, the researchers saw a result that stops cell infection of Ebola.

The study was led by ECS member and UCM professor Nazario Martín.

“Fullerenes are hollow cages exclusively formed by carbon atoms,” says Martín.

This from UCM:

These molecules decorated with specific carbohydrates (sugars) present affinity by the receptor used as an entry point to infect the cell and act blocking it, thus inhibiting the infection. Researchers employed an artificial Ebola virus by expressing one of its proteins, envelope protein GP1, responsible of its entry in the cells. In a model in vitro, this protein is covering a false virus, which is able of cell infection but not of replication.

(more…)

Building Better Electronic Devices

The development of the silicon chip forever changed the field of electronics and the world at large. From computers to cellphones to digital home appliances, the silicon chip has become an inextricable part of the structure of our society. However, as silicon begins to reach its limits many researchers are looking for new materials to continue the electronics revolution.

Fan Ren, Distinguished Professor at the University of Florida and Technical Editor of the ECS Journal of Solid State Science and Technology, has based his career in the field of electronics and semiconductor devices. From his time at Bell Labs through today, Ren has witnessed much change in the field.

Future of Electronics

Upon coming to the United States from Taiwan, Ren was hired by Bell Labs. This hub of innovation had a major impact on Ren and his work, and is where he first got his hands-on semiconductor research. During this time, silicon was the major player as far as electronic materials went. While electronics have transformed since that time, the materials used to create integrated circuits have essentially stayed the same.

People keep saying of other semiconductors, “This will be the material for the next generation of devices,” says Ren. “However, it hasn’t really changed. Silicon is still dominating.”

(more…)

Developing Carbon Nanotube Transistors

carbon_nanotubesx519Since the development of the transistor in 1947, the semiconductor industry has been working to rapidly and continuously improve performance and processing speeds of computer chips. Following Gordon Moore’s iconic law—stating that transistor density would double every two years—the semiconducting silicon chip has propelled technology through a wave of electronic transformation.

Next Electronics Revolution

But all good things must come to an end. The process of packing silicon transistors onto computer chips is reaching its physical limits. However, IBM researchers state that they’ve made a “major engineering breakthrough” that provides a viable alternative to silicon transistors.

The team from IBM proposes using carbon nanotube transistors as an alternative, which have promising electrical and thermal properties. In theory, carbon nanotube transistors could be much faster and more energy efficient than currently used transistors. Nanotube transistors have never been utilized in the past due to major manufacturing challenges that prevented their wide-spread commercialization. However, the IBM researchers are combating this issue by combining the nanotubes with metal contacts to deliver the electrical current.

(more…)

Simple, Inexpensive Electrochemical Diagnostics

A team of chemists from the University of Montreal have developed a DNA-based electrochemical diagnostic test that is inexpensive and can provide results in just a few minutes. This development has the potential to lead to point-of-care medical devices that can provide results for diagnoses ranging from cancer to autoimmune diseases in just minutes.

Not only is this development exciting for the advancement of the scientific community, it also has the potential to impact global health due to the low cost and ease of use of the test. The new development could help cut lag time and expenses between diagnosis and treatment for both communicable and non-communicable diseases on a global level.

Molecular Diagnostics at Home

“Despite the power of current diagnostic tests, a significant limitation is that they still require complex laboratory procedures. Patients typically must wait for days or even weeks to receive the results of their blood tests,” Alex Vallée-Bélisle said, head of the research team.

At the core of the DNA-based device is one of the simplest forces in chemistry: steric effects. Essentially, the new development focuses on the phenomenon of atoms getting too close to one another and using force to push off each other. This reaction allows researchers to detect a wide array of protein markers.

(more…)

Digestible Batteries to Power Edible Electronics

Since the 1970s, biomedical engineers have been looking for a way to develop a “smart pill” that can monitor and treat ailments electronically. Since then, breakthroughs such as the camera pill have come about—allowing those in the medical field to perform more complex surgeries and study how drugs are broken down.

While we have biologically understood the concept of edible electronics for some time now, researchers have not been able to nail down the appropriate materials that should be used in such an application as to not cause internal damage.

“Smart Pill” to Sense Problems

Researchers from Carnegie Mellon University are putting fourth their proposal to this question in the journal Trends in Biotechnology, which could yield edible electronic technology that is safe for consumption.

“The primary risk is the intrinsic toxicity of these materials, for example, if the battery gets mechanically lodged in the gastrointestinal tract—but that’s a known risk. In fact, there is very little unknown risk in these kinds of devices,” says Christopher Bettinger, a professor in materials science and engineering and author of the study. “The breakfast you ate this morning is only in your GI tract for about 20 hours—all you need is a battery that can do its job for 20 hours and then, if anything happens, it can just degrade away.”

(more…)

Lab-on-a-Chip Changes Clinical Practice

Biomedical engineers are getting closer to perfecting novel lab-on-a-chip technology. The latest breakthrough from Rutgers University shows promising results for significant cost cutbacks on life-saving tests for disorders ranging from HIV to Lyme disease.

This from Rutgers University:

The new device uses miniaturized channels and values to replace “benchtop” assays – tests that require large samples of blood or other fluids and expensive chemicals that lab technicians manually mix in trays of tubes or plastic plates with cup-like depressions.

Read the full article.

Changing Clinical Practice 

The new development builds on previous lab-on-a-chip research, such as the device from Brigham Young University to improve and simplify the speed of detection of prostate cancer and kidney disease. Researchers from Ecole Polytechnique Federale de Lausanne have also propelled this novel research with their lab-on-a-chip device that can make the study of tumor cells significantly more efficient.

(more…)

Solar-Powered, Transparent Batteries

The technology that was created for sci-fi movies may soon be reality. A new transparent, solar powered lithium ion battery has been developed by a team of researchers from Kogakuin University. Not only could this new battery bring transparent smartphones reminiscent of the Iron Man movies to life, but it could replace any transparent items (i.e. windows) for additional energy storage capabilities.

Since a team of researchers at Stanford University developed the first nearly transparent battery about four years ago, the team at Kogakuin University has been hard at work on their transparent battery that combines clarity with self-charging abilities.

Other researchers have been focusing on the qualities and potential of transparent materials. A team from Michigan State University began exploring this field last year to develop a transparent luminescent solar concentrator that can be used on buildings, cell phones, and other clear surfaces. However, this development did not have the functionality that the new transparent battery from Kogakuin University does.

(more…)