Clothes That Monitor, Transmit Biomedical Info

The smart fabric developed is durable, malleable, and can be woven with cotton or wool.Credit: Université Laval/Stepan Gorgusta

The smart fabric developed is durable, malleable, and can be woven with cotton or wool.
Credit: Université Laval/Stepan Gorgusta

We’ve hear about smartphones and “smart cars,” and even such recent developments as the smart highway – but what about a smart textile?

Researchers from Université Laval’s Faculty of Science and Engineering and Centre for Optics, Photonics and Lasers are well on their way to developing clothes that can monitor and transmit biomedical information on wearers.

By using sensor technology and wireless networks, this smart textile will be able to track and transmit this medical information – which has the potential to be extremely beneficial for people suffering from chronic disease, firemen and police offers, and people who are elderly.

(more…)

10 Holiday Gifts Perfect for Scientists

Shopping for the electrochemist or solid state scientist in your life can be difficult. But don’t panic, we’re here to help. (If you happen to be that scientist, well, that’s the reason for the “share” button.) We’ve searched the Internet to find the perfect gift – from witty novelties for those with a sense of humor, to practical tools that he or she will use every day.

Take a look at the list we’ve complied and let us know if we’ve missed anything in the comments!

(more…)

Van Gogh under the Microscope

By examining paint segments from Van Gough's "Sunflowers," experts believe preservation techniques could be improved.Credit: Van Gogh Gallery

By examining paint segments from Van Gogh’s “Sunflowers,” experts believe preservation techniques could be improved.
Credit: Van Gogh Gallery

Electrochemical and solid state science transcend the limits of academic science to touch many of the things we come into contact with on a day-to-day basis, whether we know it or not. Most recently we’ve gotten a first-hand account of this at our Electrochemical Energy and Water Summit, where some of the brightest minds in electrochemical and solid state science came together to solve critical issues in global sanitation. Now, these sciences are even assisting in the preservation of culture.

Pin-sized painting samples from Vincent van Gogh’s “Sunflowers” painting have been extracted from the Van Gogh Museum and are now under the microscope at The University of Queensland’s Centre for Microscopy and Microanalysis (CMM).

UQ’s Professor John Drennan is leading the project, which aims to understand the aging characteristics of significant artworks in order to improve conservation techniques.

(more…)

Why We Need More Women in Science

There is no doubt that women have made their mark in science. From Marie Curie to Rosalind Franklin – women have made outstanding contributions to innovation, research, and technology. Still, there is a significant gender bias that exists in the field, which affects research outcomes and discovery.

The questions exists: Why are there still so few women in science? How will this affect what we learn from research?

According to an article in National Geographic, women make up half the national workforce and earn more college and graduate degrees than men. Still, the gender gap in science exists – specifically in fields such as engineering.

This from National Geographic:

According to U.S. Census Bureau statistics, women in fields commonly referred to as STEM (science, technology, engineering, mathematics) made up 7 percent of that workforce in 1970, a figure that had jumped to 23 percent by 1990. But the rise essentially stopped there. Two decades later, in 2011, women made up 26 percent of the science workforce.

(more…)

Not Your Average Light Bulb

Thermal management represents about 25-30 percent of total costs in a LED bulb, second only to the LEDs themselves.Credit: Cree

Thermal management represents about 25-30 percent of total costs in a LED bulb, second only to the LEDs themselves.
Credit: Cree

LED maker Cree has introduced a new consumer bulb that costs less, lasts longer, and consumes less energy than the traditional bulb.

The company’s new bulb does not use the heats sinks that LED bulbs typically use. An LED bulb’s metal collar or other heat sink serves to draw away heat from the bulb to ensure a long life. Accordingly, this makes the bulb more expensive and give it a bulky look.

By eliminating the heat sink, Cree lowered the bulb cost from $9.97 for a “soft white” 40-watt to $7.97.

This from IEE Spectrum:

In its new design, heat is removed from the LEDs through convection, or a flow of air through the bulb. The LEDs are mounted on circuit boards, rather than the metal tower. As the diodes heat up, they draw air from outside the bulb through small vent-like openings at the base and on the top. Because hot air rises, air flows continually through the bulb to cool the LEDs. The airflow circulates whether the bulb is vertical, horizontal or upside down, Watson says.

Read the full article here.

The new generation bulb will last 25,000 hours and consume 85 percent less energy than an incandescent bulb.

Want to know what the future has in store for LEDs? Check out what our scientists have been researching to propel this technology. While you’re over there, sign up for our e-Alerts so you are up-to-date on what is happening in the world  of electrochemical and solid state science and technology.

Innovative device detects prostate cancer and kidney disease on the spot.
Credit: Brigham Young University

Scientists from Brigham Young University have developed a remarkably simple device that has the potential to save lives.

The innovative device, created by chemist Adam Woolley and his students, can detect prostate cancer and kidney disease on the spot, all by simply dropping a urine sample into a tiny tube and seeing how far it goes.

This from Brigham Young University:

The tube is lined with DNA sequences that will latch onto disease markers and nothing else. Urine from someone with a clean bill of health would flow freely through the tube (the farther, the better). But even at ultra-low concentrations, the DNA grabs enough markers to slow the flow and signal the presence of disease.

(more…)

New Microscope Collects Dynamic Images

Growing microtubule endpoints and tracks are color coded by growth phase lifetime.Credit: Betzig Lab, HHMI/Janelia Research Campus, Mimori-Kiyosue Lab, RIKEN Center for Developmental Biology

Growing microtubule endpoints and tracks are color coded by growth phase lifetime.
Credit: Betzig Lab, HHMI/Janelia Research Campus, Mimori-Kiyosue Lab, RIKEN Center for Developmental Biology

A new discovery out of Howard Hughes Medical Institute’s Janelia Research Campus is allowing biologists to see 3-D images of subcellular activity in real time.

They’re calling it lattice light sheet microscopy, and it’s providing yet another leap forward for light microscopy. The imaging platform was developed by Eric Betzig and colleagues in order to collect high-resolution images rapidly and minimize damage to cells.

Continue reading to check out the amazing video that shows the five different stages during the division of a HeLa cell as visualized by the lattice light sheet microscope.

(more…)

Diagnosing Disease with a Skin Patch

The researchers optimized their device so it could capture two biomarkers for the malaria parasite, Plasmodium falciparum, which kills more than 1 million people every year.

The researchers optimized their device so it could capture two biomarkers for the malaria parasite, Plasmodium falciparum, which kills more than 1 million people every year.

One day, there may be no poking or prodding for a blood sample when you go to the doctor.

In the American Chemical Society journal Analytic Chemistry, researchers report that they have developed a patch that can detect malaria proteins in live mice, and believe that this same technology could be adapted for use in humans to diagnose other diseases.

Along with being generally painful, drawing blood requires trained personnel and expensive lab equipment and facilities for analysis. With the development of this patch, scientists believe they will be able to overcome these obstacles in the near future, thereby providing better health care for resource-limited patients.

This from the American Chemical Society:

Scientists have been trying to address these hurdles by developing diagnostic patches that are covered on one side with thousands of microscopic, hollow needles that can sample fluid in the skin. But so far, these devices have only been able to test for one compound at a time. However, many diseases can be diagnosed more reliably by detecting multiple biomarkers. Corrie’s team wanted to design a new patch that could meet this need.

(more…)

This hybrid skate has strain gauges and wires leading from gauges to Wheatstone bridge boards.Credit: Institute of Physics Publishing

This hybrid skate has strain gauges and wires leading from gauges to Wheatstone bridge boards.
Credit: Institute of Physics Publishing

Although there may not be nearly as much physical contact as football or hockey, ice skating has been known to yield very serious injuries to its participants. During jumps, skaters can exert forces of more than six times their body weight. With training sessions consisting of 50 to 100 jumps each, it is easy to see how skating can take a toll on the body.

Now, researchers from Brigham Young University and Ithaca College are using sensor technology in existing blades to help discover how to prevent injury, as well as inform the design of a new and improved skating boot.

This from the Institute of Physics:

The strain gauges are attached directly to the stanchions where the blade connects to the boot, and when the stanchions deform due to the force induced by the ice skater, it causes the strain gauges to deform as well. Once deformed, the electrical resistance of the strain gauge changes—this change is measured by a device called a Wheatstone bridge, and a central control system is used to calculate the overall force that was imparted. The entire measuring device, including a battery, weighs 142 g and fits under the boot space of the blade so that none of the components makes contact with the ice.

(more…)

See-through sensors, which have been developed by a team of UW-Madison engineers, should help neural researchers better view brain activity.Credit: Justin Williams' Research Group

See-through sensors, which have been developed by a team of UW-Madison engineers, should help neural researchers better view brain activity.
Credit: Justin Williams’ Research Group

A team of engineers at the University of Wisconsin-Madison have developed invisible implantable medical sensor array, which will help neural researchers better view and understand brain activity.

This from the University of Wisconsin-Madison:

Neural researchers study, monitor or stimulate the brain using imaging techniques in conjunction with implantable sensors that allow them to continuously capture and associate fleeting brain signals with the brain activity they can see. However, it’s difficult to see brain activity when there are sensors blocking the view.

Read the full article here.

The development of the see-through sensor will help overcome this major technological hurdle.

“One of the holy grails of neural implant technology is that we’d really like to have an implant device that doesn’t interfere with any of the traditional imagining diagnostics,” says Justin Williams, a professor of biomedical engineering and neurological surgery at UW-Madison. “A traditional implant looks like a square of dots, and you can’t see anything under it. We wanted to make a transparent electronic device.”

The research is published in the October 20 issue of the online journal Nature Communications.

The team developed the sensor using graphene due to its versatility and biocompatibility, thus making the device incredibly flexible and transparent because the electronic circuit elements are only four atoms thick.

Sensor science and technology is growing rapidly in response to an ever-increasing demand for faster, cheaper, smaller, and more sensitive means to monitor the chemical, biological, and physical world around us. Make sure you stay up-to-date with the latest research in this exciting field through our Digital Library.