BatteryLithium-ion batteries power a vast majority of the world’s portable electronics, from smartphones to laptops. A standard lithium-ion batteries utilizes a liquid as the electrolyte between two electrodes. However, the liquid electrolyte has the potential to lead to safety hazards. Researchers from MIT believe that by using a solid electrolyte, lithium-ion batteries could be safer and able to store more energy. However, most research in the area of all-solid-state lithium-ion batteries has faced significant barriers.

According to the team from MIT, a reason why research into solid electrolytes has been so challenging is due to incorrect interpretation of how these batteries fail.

This from MIT:

The problem, according to this study, is that researchers have been focusing on the wrong properties in their search for a solid electrolyte material. The prevailing idea was that the material’s firmness or squishiness (a property called shear modulus) determined whether dendrites could penetrate into the electrolyte. But the new analysis showed that it’s the smoothness of the surface that matters most. Microscopic nicks and scratches on the electrolyte’s surface can provide a toehold for the metallic deposits to begin to force their way in, the researchers found.

(more…)

BatteryMost of today’s batteries are made up of two solid layers, separated by a liquid or gel electrolyte. But some researchers are beginning to move away from that traditional battery in favor of an all-solid-state battery, which some researchers believe could enhance battery energy density and safety. While there are many barriers to overcome when pursing a feasible all-solid-state battery, researchers from MIT believe they are headed in the right direction.

This from MIT:

For the first time, a team at MIT has probed the mechanical properties of a sulfide-based solid electrolyte material, to determine its mechanical performance when incorporated into batteries.

Read the full article.

“Batteries with components that are all solid are attractive options for performance and safety, but several challenges remain,” says Van Vliet, co-author of the paper. “[Today’s batteries are very efficient, but] the liquid electrolytes tend to be chemically unstable, and can even be flammable. So if the electrolyte was solid, it could be safer, as well as smaller and lighter.”

(more…)

Steve Martin

ECS member Steve Martin receives a $2.5M grant to pursue research in glassy solids.
Image: Christopher Gannon

The world relies on battery power. The smartphone market alone – which is powered by lithium-ion batteries – is expected to reach 1.5B units in 2016. ECS member Steve Martin believes he may be able to take those batteries to the next level through efforts in glassy solids.

Martin, a professor at Iowa State University and associate of the U.S. Department of Energy’s Ames Laboratory, has been in the field of battery research for over 30 years. Throughout that time, his main focus of research has shifted to measuring the basic properties of glassy solids and trying to understand how their ions move and the thermal and chemical stability.

Martin believes that using glass solids as the electrolytes in batteries would make them safer and more powerful. This is an effort to diverge from traditional liquid-electrolyte batteries, which have experienced issues with safety and energy capacity.

To push this research, Martin recently received a three-year, $2.5M grant from the DOE.

“This is my dream-come-true project,” Martin says. “This is what I’ve been working on for 36 years.”

(more…)