Reginald Penner

Reginald Penner (pictured) and doctoral candidate developed a nanowire-based batter that can be charged hundreds of thousands of times.
Image: Daniel A. Anderson/UC Irvine

Researchers at the University of California, Irvine may have just developed the ever-lasting battery.

A recent study, published in ACS Energy Letters, details a nanowire-based battery material that can be recharged hundreds of thousands of times – making more realistic the idea of a battery that would never need to be replaced.

Potential applications for the battery range from computers and smartphones to cars and spacecrafts.

Highly-conductive nanowires have always been thought appropriate for battery design, but were held back by the fact that their fragility causes them to breakdown after multiple charging cycles. By coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte, the researchers have turn the frail structure into something that has almost infinite recharging capabilities.

Mya Le Thai, a doctoral candidate, led the charge on the research – cycling the tested electrode up to 200,000 times over a three month period without loss of capacity or damage to the nanowire.

“Mya was playing around, and she coated this whole thing with a very thin gel layer and started to cycle it. She discovered that just by using this gel, she could cycle it hundreds of thousands of times without losing any capacity,” said Reginald M. Penner, chair of UC Irvine’s chemistry department and ECS member. “That was crazy, because these things typically die in dramatic fashion after 5,000 or 6,000 or 7,000 cycles at most.”

Thai believes that this study shows that nanowire-based batteries could be commercially viable, and potentially the next big break in battery technology.

When the loaves in your breadbox begin to develop a moldy exterior caused by fungi, they tend to find a new home at the bottom of a trash can. However, researchers have recently developed some pretty interesting results that suggest bread mold could be the key to producing more sustainable electrochemical materials for use in rechargeable batteries.

For the first time, researchers were able to show that the fungus Neurospora crassa (better known as the enemy to bread) can transform manganese into mineral composites with promising electrochemical properties.

(MORE: Read the full paper.)

“We have made electrochemically active materials using a fungal manganese biomineralization process,” says Geoffrey Gadd of the University of Dundee in Scotland. “The electrochemical properties of the carbonized fungal biomass-mineral composite were tested in a supercapacitor and a lithium-ion battery, and it [the composite] was found to have excellent electrochemical properties. This system therefore suggests a novel biotechnological method for the preparation of sustainable electrochemical materials.”

This from University of Dundee:

In the new study, Gadd and his colleagues incubated N. crassa in media amended with urea and manganese chloride (MnCl2) and watched what happened. The researchers found that the long branching fungal filaments (or hyphae) became biomineralized and/or enveloped by minerals in various formations. After heat treatment, they were left with a mixture of carbonized biomass and manganese oxides. Further study of those structures show that they have ideal electrochemical properties for use in supercapacitors or lithium-ion batteries.

Read the full article here.

The manganese oxides in the lithium-ion batteries are showing an excellent cycling stability and more than 90 percent capacity after 200 cycles.

An interdisciplinary team, including 32 year ECS member Stuart Licht and ECS student member Matthew Lefler, has developed a way to make electric vehicles that are not only carbon neutral, but carbon negative – capable of reducing the amount of atmospheric carbon dioxide as they operate by transforming the greenhouse gas.

By replacing the graphite electrodes that are currently being used in the development of lithium-ion batteries for electric cars with carbon materials recovered from the atmosphere, the researchers have been able to develop a recipe for converting collected carbon dioxide into batteries.

This from Vanderbilt University:

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Read the full article.

The research is not the first time scientists have shown progress in collecting and converting harmful greenhouse gases from the environment.

Typically, carbon dioxide conversion revolves around transforming the gas into low-value fuels such as methanol. These conversions often do not justify the costs.

(MORE: Read “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.“)

However, the new process produces better batteries that are not only expected to be efficient, but also cost effective.

(more…)

Technology Prospects for Future Mobility

review-paperWith the transportation sectors of industrialized countries on the rise and greenhouse gas emissions at an all-time high, many scientists and engineers are searching for the next-generation of transportation. From hybrid to electric to hydrogen, alternative energy sources for vehicles are being explored and tested throughout the scientific community. Now, many are wondering which technology will win in the race between battery- and hydrogen-powered cars.

A recent open access paper published in the Journal of The Electrochemical Society (JES) explores this topic. Authors Hubert A. Gasteiger, Jens-Peter Suchsland, and Oliver Gröger have outlined the technological barriers for next-generation vehicles in “Review—Electromobility: Batteries or Fuel Cells?” This paper comes as part of the recent JES Collection of Invited Battery Review Papers.

The majority of today’s vehicles depend on petroleum-based products in internal combustion engines to operate. The burning of these fuels results in the emission of greenhouse gasses. The majority of these transportation sector greenhouse gas emissions do not come from large modes of transportation such as aircrafts or ships—but are primarily produced by cars, trucks, and SUVs.

In the recently published review, the authors describe the possibilities of extended range electric vehicles, the challenges in hydrogen fuel cell vehicles, and the potential for new materials to be used in these applications.

Read this open access paper and read the rest of the JES Collection of Invited Battery Review Papers.

Interface: Korea Section News

interface-text-graphic


Opening of the ECS Korea Section-KIST Joint Symposium on Electrochemical CO2 Conversion in Gwangju, South Korea.

Opening of the ECS Korea Section-KIST Joint Symposium on Electrochemical CO2 Conversion in Gwangju, South Korea.

The Korea Section Symposium (Organizers: Prof. Yung-Eun Sung, Prof. Soo-Kil Kim and Dr. Byoung Koun Min) was held on April 2, 2015 at the Kimdaejung Convention Center in Gwangju, Korea.

This year, the event was held as a Joint Symposium with the Korea Institute of Science and Technology, with the title “ECS Korea Section-KIST Joint Symposium on Electrochemical CO2 Conversion.” It was composed of seven talks on electrocatalysts and systems for electrochemical reduction of CO2.

(more…)

Live Webcast: ECS and Your Graduate Career


LIVE WEBCAST: April 30th at 5:00pm
Find out more and register today!


Savinell_Robert_F_2014Flow Batteries for Grid-Scale Energy Storage
Large-scale energy storage is required to meet a multitude of current energy challenges. These challenges include modernizing the grid, incorporating intermittent renewable energy sources (so as to dispatch continuous electrical energy), improving the efficiency of electricity transmission and distribution, and providing flexibility of storage independent of geographical and geological location. Read more.

How to Publish in ECS Journals
ECS publications span the entire subject area of electrochemistry and solid-state science. The Society publishes peer-reviewed technical journals, proceedings, monographs, conference abstracts, and a quarterly news magazine. The Society’s oldest title, Journal of The Electrochemical Society, has been in continuous publication since the Society’s founding in 1902.

Presented by Robert F. Savinell
Editor of the Journal of the Electrochemical Society and ECS Electrochemistry Letters.

ECS Student Member Benefits, Awards, and Travel Grants
ECS offers a variety of options for students to get involved. Tune in to find out more.

Presented by Beth Fisher
ECS Associate Director of Development & Membership Services

Space is limited! Register today!

Hosted by ECS and the Research Triangle Student Chapter of ECS.

IMLB Focus Issue Now Online

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The Journal of The Electrochemical Society (JES) is publishing focus issues related to IMLB (International Meeting on Lithium Batteries) beginning with the 2014 meeting. Important to note is that this focus issue is completely Open Access, enabling a much broader audience to read these papers than would have access with a subscription-only issue.

Go to the table of contents now!

Twenty-one papers have here been selected for this focus issue. These papers touch upon many important new aspects in the field and illustrate well the wide spectrum of topics that were discussed at the IMLB 2014 meeting.

The most important international conference event in the Li battery community is the biannual International Meeting on Lithium Batteries; a conference series founded by Bruno Scrosati which began 33 years ago. The IMLB meeting can, in fact, be seen as among the most important conferences related to power sources in general.

(more…)

Deep-Fried Graphene for Energy Storage

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.Credit: Chem. Mater.

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.
Credit: Chem. Mater.

Materials scientists have developed a new technique that could provide a simpler and more effective way to produce electrode materials for batteries and supercapacitors, which could potentially lead to devices with improved energy and power densities.

The researchers have unlocked this new battery technology by exposing tiny bits of graphene to a process that is very similar to deep-frying.

Prior to this development, scientists had difficulty using graphene in electrodes due to the difficulty encountered when processing the material. However, the researchers out of Yonsei University have learned how to harness the material’s electrical and mechanical properties while retaining its high surface are by using an alternative technique.

(more…)

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

Date: January 26, 2014

Time: Networking and refreshments at 6:15 PM; Seminar begins at 7:00 PM

Place: University of Arizona
Tuscon, AZ 85721
Agave Room, 4th Floor of Student Union Building

Cost: Free to attend; $5 for light refreshments

Speaker: Professor Robert F. Savinell
George S. Dively Professor of Electrochemical Engineering at Case Western Reserve University
Professor Savinell is recognized as a leading authority on electrochemical energy storage and conversion. His research has been directed at fundamental science and engineering research for electrochemical systems and novel device design, development, and optimization. Dr. Savinell has over 100 publications and seven patents in the electrochemical field. He is a past chair of ECS’s Electrolytic and Electrochemical Engineering Division, a former editor of the Journal of The Electrochemical Society, and a Fellow of ECS.

(more…)

Member Spotlight – Ryohei Mori

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.Image: Journal of The Electrochemical Society

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.
Image: Journal of The Electrochemical Society

A new long-life aluminum-air battery is set to resolve challenges in rechargeable energy storage technology, thanks to ECS member Ryohei Mori.

Mori’s development has yielded a new type of aluminum-air battery, which is rechargeable by refilling with either salt or fresh water.

The research is detailed in an open access article in the Journal of The Electrochemical Society, where Mori explains how he modified the structure of the previous aluminum-air battery to ensure a longer battery life.

Theoretically, metal-air technology can have very high energy densities, which makes it a promising candidate for next-generation batteries that could enable such things as long-range battery-electric vehicles.

However, the long-standing barrier of anode corrosion and byproduct accumulation have halted these batteries from achieving their full potential. Dr. Mori’s recently published paper, “Addition of Ceramic Barriers to Aluminum-Air batteries to Suppress By-product Formation on Electrodes,” details how to combat this issue.

(more…)