John B. Goodenough © Nobel Media. Photo: Alexander Mahmoud

As John B. Goodenough looked on, his Nobel Lecture was delivered by Arumugam Manthiram at the Aula Magna, Stockholm University, on December 8, 2019. Both Goodenough and Manthiram are fellows of The Electrochemical Society (ECS).

Nobel Laureates are required to give a lecture on a subject connected with the work for which they receive the award. Goodenough videotaped his lecture, “Designing Lithium-ion Battery Cathodes,” before December 8, then invited Manthiram to present it in Stockholm. Manthiram added explanations and comments between Goodenough’s slides and video, concluding with a summary of Goodenough’s research and its historical significance. The three classes of materials Goodenough discovered—layered oxide, spinel oxide, and polyanion oxide—still remain the only viable cathodes and the basis for future development. Goodenough pushed the boundaries of sold-state chemistry and physics. “His trump card is using chemistry and physics to solve engineering problems,” said Manthiram on another occasion. (more…)

Mahsa Ebrahiminia (Photo by Gleb Yushin)

ECS is pleased to announce the winners of symposia-funded best presentation awards from the 236th ECS Meeting in Atlanta. Through the generous funding of individual symposium sponsors, several awards of this type are presented at every ECS meeting. You are invited to celebrate the excellent work of these authors:

A05 – Lithium Ion Batteries – Best Poster Award Winners

Thank you to Livent, Arbin Instruments, and Gamry Instruments, Inc. for their generous sponsorship of this symposium.

Mahsa Ebrahiminia, University of Utah: “Molecular Dynamics Simulation Study of Ion Transport, Structural and Mechanical Properties of Li2CO3 and Mn-Li-CO3(more…)

Submission Deadline EXTENDED: February 12, 2020 March 15, 2020

Submit your manuscripts to the Journal of The Electrochemical Society‘s Focus Issue on Battery Safety, Reliability, and Mitigation.

About the focus issue

This Journal of The Electrochemical Society focus issue addresses the fundamental risks and issues associated with battery safety and reliability. Industry challenges with fielding safe and reliable batteries are increasing as new cell designs are introduced into advanced energy storage applications requiring higher specific energies, fast charging, and lower cost alternatives. As such, improvements in cell and battery safety design without compromising performance continues to be a major focus for researchers, manufacturers and users across all sectors of the energy storage marketplace. Better understanding of battery failure mechanisms will further enable regulatory agency approval and public acceptance of early deployment of advanced battery energy storage systems for high reliability applications. (more…)

Is the Force With Us Yet?

In “The Lightsaber Battery,” author Richard Rogers asks if recent electric vehicle battery research makes a lightsaber battery possible. After reviewing Star Wars technology and the current state of battery technology, his conclusion is a conditional yes! However, the final stage of light saber development depends on a Kyber crystal which amplifies and channels the cosmic energy of the Force. Unfortunately, a crystal like that hasn’t been discovered in our universe yet.

Star Wars fans and electric battery developers do not despair! The need for longer-lasting electric vehicle batteries has raised cycle life goals similar to the lightsaber’s requirements—and electrochemists are rising to the challenge! That galaxy “far, far away” is coming closer and closer. (more…)

ECS’s Detroit Section is proud to present guest speaker Fabio Albano at its October 10 section meeting. He will speak on:

“Best of Both Worlds: A Marriage of Two Battery Technologies”


Fabio Albano

Vice President of Technology
NantEnergy, Inc. (formerly Fluidic Energy)
Scottsdale, Arizona, USA

When:
Thursday, 10 October, 2019

Schedule:
17:30h | Reception
18:30h | Dinner
19:30h | Speaker (more…)

Deadline for submitting abstracts
December 2, 2019
Submit today!

Topic Close-up #4

Symposium A04: Battery Student Slam 4

Symposium focus: This special symposium is dedicated to students working on energy storage and energy conversion. In the student slam, students have the opportunity to present flash oral presentations on their work in a 10-minute time slot. All students enrolled at a valid degree-granting institution may submit an abstract describing their presentation. (more…)

Recent growth in space-related activities has presented numerous opportunities for electrochemistry in space. That’s why Greg Jackson, chair of the ECS High-Temperature Energy, Materials & Processes Division (H-TEMP) and mechanical engineering professor at the Colorado School of Mines, took it upon himself to bring the first-ever symposium dedicated to “Electrochemistry in Space” to the 236th ECS Meeting.

“As a board member and someone who cares about the Society expanding its audience, I felt that there are many activities going on in regards to applying electrochemistry in space and the uniqueness of the space environment merited a special symposium,” said Jackson, lead symposium organizer.

The potential for increased lunar and Martian activities with in situ resource utilization (ISRU), human space flight, and in-space satellite maintenance, and space debris management present many technical challenges and opportunities where electrochemistry plays a central role. (more…)

Impact Canada is working on a $4.5-million project known as the Charging the Future Challenge. The goal is to accelerate made-in-Canada battery innovation, build a clean energy future, and provide economic growth in Canada. The 18-month challenge offers five finalists the opportunity to pitch their ideas for battery breakthroughs to a jury for a chance to win up to $700,000 each to develop battery prototypes, with the winner receiving a $1 million grand prize. (more…)

Naoki Ota. Photo Credit: 24M

ECS’s Detroit Section is proud to present guest speaker Naoki Ota at its September section meeting. He will speak on:

“Lithium-Ion Batteries: Semi-Solid Electrode Technology—Next Generation Product / Manufacturing Platform for Lithium Ion”


Naoki Ota

President and CTO
24M Technologies, Inc.
Cambridge, Massachusetts 02139, USA (more…)

Energy storage is crucial for the successful transition to renewable energy. Yet lithium-ion batteries have major limitations. Demand for lithium has increased exponentially, but production has not kept pace. Extracting lithium by brine mining is a long, costly, energy-intensive, and dangerous process with significant environmental impact. Access is difficult as most lithium mines are in South America.

Researchers at the Indian Institute of Technology (IIT) Madras developed a rechargeable iron ion battery to replace lithium. It uses mild steel as the anode and can store a high amount of energy. The iron battery withstood 150 cycles of charging and discharging under controlled conditions. After 50 cycles, the battery had 54 percent capacity retention. (more…)

  • Page 7 of 15