Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.

(more…)

Yue Kuo’s work in solid state science has yielded many innovations and has made a tremendous mark on the scientific community. Since his arrival at ECS in 1995, Kuo was named an ECS Fellow, was recently named Vice President of the Society, previously served as an associate editor of the Journal of The Electrochemical Society, and is currently one of the technical editors of the ECS Journal of Solid State Science and Technology. Additionally, Kuo received the ECS Gordon E. Moore Medal for Outstanding Achievement in Solid State Science and Technology at the 227th ECS Meeting.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

Pulse Check

EstherTakeuchi09

Esther S. Takeuchi, past President of ECS and key contributor to the battery system that is still used to power life-saving implantable cardiac defibrillators

As a membership and development intern, my responsibilities include the organizing and electronic conversion of paper membership documents as ECS makes the transition from file cabinets to e-file folders. While going through the archive of members my heart skipped a beat, so to speak, as I read the profile of Esther S. Takeuchi. There are countless articles and information about Dr. Takeuchi, so I won’t press you with too many of her accolades. While being a member ECS and under the funding of Wilson Greatbatch she developed the Li/SVO (silvervanadium oxide) battery that powers the majority of the world’s lifesaving cardiac defibrillators.

Among the many members of ECS, Dr. Takeuchi stood out to me due in part to her humble beginnings. Despite her origin she accomplished momentous feats that impacted millions of lives. Energy Technologies Area states, “Dr.Takeuchi has been credited with holding more patents (currently over 140) than any other living woman.” Dr. Takeuchi’s continued membership with ECS helps promote and encourage the retention of current members within the Society, and may also attract new members who believe in the importance of this line of work. It’s a true benefit for society that members like Esther S. Takeuchi present their work to the world so that we can all benefit from it.

Let’s see how your heart is doing. Take your first two fingers (not your thumb) to press lightly over the blood vessels on your wrist. Count your pulse for 10 seconds and multiply by 6 to find your beats per minute. According to WebMD, the normal resting heart rate for a healthy adult ranges from 50-70 bpm. However for people with an irregular heart rhythm, commonly known as arrhythmia, this count may be off as your heart could be beating too quickly, too slowly, or otherwise abnormally. For serious cases, an implantable defibrillator or pacemaker is implanted into the chest or abdomen to help regulate and effectively shock the heart back into a normal rhythm again. If an electrical device needs to be placed inside of a living body, it had better work, not leak, and last for a very long time. Innovative, revolutionary, and life-changing are just a few thoughts that come to mind when realizing the type of contributions members like Dr. Takeuchi make to not only keep the passion beating in the hearts of ECS members, but the rest of the world as well. Check out the her video interview with ECS, or download it as a podcast, to learn more about Dr.Takeuchi’s innovative and monumental work.

[Image: State University of New York at Buffalo]
printablelii

The batteries have the ability to be integrated into the surface of the objects, making it seem like seem like there is no battery at all.

A new development out of the Ulsan National Institute of Science and Technology (UNIST) has yielded a new technique that could make it possible to print batteries on any surface.

With recent interests in flexible electronics—such as bendable screen displays—researchers globally have been investing research efforts into developing printable functional materials for both electronic and energy applications. With this, many researchers predict the future of the li-ion battery as one with far less size and shape restrictions, having the ability to be printed in its entirety anywhere.

The research team from UNIST, led by ECS member Sang-Young Lee, is setting that prediction on the track to reality. Their new paper published in the journal Nano Letters details the printable li-ion battery that can exist on almost any surface.

(more…)

We recently sat down with esteemed battery engineer Esther Takeuchi, the key contributor to the battery system that is still used to power the majority of life-saving implantable cardiac defibrillators.

Takeuchi’s career has made an immense impact on science and has been recognized globally. She currently holds more than 150 U.S. patents, more than any American woman, which earned her a spot in the Inventors Hall of Fame.

Her innovative work in battery research also landed her the National Medal of Technology and Innovation in 2008, where the president complimented her on her work that is “responsible for saving millions of lives.”

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

PS: Check out the video version of this podcast and interviews with other world-leaders in electrochemical and solid state science as part of our Masters Series.

(more…)

viswanathan-news-brief-chart_500x429-minLithium-air batteries are—in theory—an extremely attractive alternative for affordable, efficient energy storage for electric vehicles. However, as researchers explore this technology, they are met with many critical challenges. If researchers can overcome these challenges, there is a great likelihood that the lithium-air battery will surpass the energy density of today’s lithium-ion battery.

Researchers from Carnegie Mellon University and the University of California, Berkley feel like they may have part of the answer to this critical challenge, which could propel the practicality of the lithium-air battery. The team, which included researchers from Bryan McCloskey and Venkat Viswanathan‘s laboratories, has found a way to both increase the capacity while preserving the recharge ability of the lithium-air battery by blending different types within the battery’s electrolytes.

“The electrolytes used in batteries are just like Gatorade electrolytes,” says Venkat Viswanathan, assistant professor of mechanical engineering at Carnegie Mellon. “Every electrolyte has a solvent and a salt. So if you take Gatorade, the solvent would be water and the salt would be something like sodium chloride, for instance. However, in a lithium air battery, the solvent is dimethoxyethane and the salt is something like lithium hexafluorophosphate.”

(more…)

Researchers believe that as work continues in relation to this study, battery technology will accelerate forward.Image: Stony Brook University

Researchers believe that as work continues in relation to this study, battery technology will accelerate forward.
Image: Stony Brook University

A collaborative group of six researchers from Stony Brook University and Brookhaven National Laboratory are using pioneering x-ray techniques to build a better and more efficient battery.

The researchers—four of whom are active ECS members, including Esther Takeuchi, Kenneth Takeuchi, Amy Marschilok, and Kevin Kirshenbaum—have recently published their internal mapping of atomic transformations of the highly conductive silver matrix formation within lithium-based batteries in the journal Science.

(PS: You can find more of these scientists’ cutting-edge research by attending the 228th ECS Meeting in Phoenix, where they will be giving presentations. Also, Esther Takeuchi will be giving a talk at this years Electrochemical Energy Summit.)

This from Stony Brook University:

In a promising lithium-based battery, the formation of a silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries—and enhance the flow of electricity—scientists need a way to see where, when, and how these silver, nanoscale “bridges” emerge. In the research paper, the Stony Brook and Brookhaven Lab team successfully mapped this changing atomic architecture and revealed its link to the battery’s rate of discharge. The study shows that a slow discharge rate early in the battery’s life creates a more uniform and expansive conductive network, suggesting new design approaches and optimization techniques.

(more…)

ECS Masters – Esther Takeuchi

“Scientific discovery is a marathon, not a sprint. Sometimes you’re running faster or slower, but you always have to keep going.”
Esther Takeuchi

Esther Takeuchi was the key contributor to the battery system that powers life-saving cardiac defibrillators.


She currently holds more than 150 U.S. patents, more than any other American woman, which earned her a spot in the Inventors Hall of Fame. Her innovative work in battery research also landed her the National Medal of Technology and Innovation in 2008.

Make sure to subscribe to our YouTube channel!

You can also listen to this installment of ECS Masters as an audio podcast.

Big Energy Boost for Small Electronics

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.Image: MIT

Yarn made of niobium nanowires can be used to make very efficient supercapacitors.
Image: MIT

With the recent surge in wearable electronics, researchers and looking for a way to get larger amounts of power to these tiny devices. Due to the limited size of these devices, it is difficult to transmit data via the small battery.

Now, MIT researchers have found a way to solve this issue by developing an approach that can deliver short but big bursts of power to small devices. The development has the potential to affect more than wearable electronics through its ability to deliver high power in small volumes to larger-scale applications. The key to this new development is the team’s novel supercapacitor.

This from MIT:

The new approach uses yarns, made from nanowires of the element niobium, as the electrodes in tiny supercapacitors (which are essentially pairs of electrically conducting fibers with an insulator between). In this new work, [Seyed M. Mirvakili] and his colleagues have shown that desirable characteristics for such devices, such as high power density, are not unique to carbon-based nanoparticles, and that niobium nanowire yarn is a promising an alternative.

(more…)

Li-Ion Battery with Double the Life

Two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.Source: Nature Communications

Two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.
Source: Nature Communications

Researchers from various institutes across Korea have found a way to nearly double the life of the lithium-ion battery.

In an ever-pressing race to create a more efficient and longer-lasting battery for electronics, researchers across the globe are looking toward alternative materials to make the li-ion battery stronger. A team of researchers associated with Samsung’s Advanced Institute of Technology, including ECS member Jang Wook Choi, have combined silicon and graphene to yield an amazing increase in lithium-ion battery efficiency.

(more…)