According to the Georgia Institute of Technology, crab shells and trees may soon replace the flexible plastic packaging used to keep food fresh. The innovative process involves spraying multiple layers of chitin from crab shells and cellulose from trees to form a flexible film similar to plastic packaging film. Once fully dried, the material is flexible, strong, transparent, and compostable.

Not only will these lifeforms become a source of sustainable and renewable wrapping, but they will also help improve food quality. Compared to conventional plastic packaging, the new technology offers a 67 percent reduction in oxygen permeability, allowing food to stay fresh even longer.

(more…)

3D Printing Organs for Transplant

A two-part water-based gel made of synthetic DNA and peptide could bring the inventors of a 3D bioprinter closer to being able to print organs for transplant, or to replace animal testing.Image:Angewandte Chemie

A two-part water-based gel made of synthetic DNA and peptide could bring the inventors of a 3D bioprinter closer to being able to print organs for transplant, or to replace animal testing.
Image: Angewandte Chemie

Need a new pancreas? These scientists will print one right up for you.

Thanks to the development of a two-part water-based gel made out of synthetic DNA from Heriot Watt University, the 3D bio-printer is one step closer to reality.

The team from Heriot-Watt that engineered this developed is led by Prof. Rory Duncan and Dr.Will Shu of the University’s Institute of Biological Chemistry, Biophysics, and Bioengineering.

“The first challenge was that if we used a normal gel it was not possible to mix live cells with it for 3D printing. Colleagues at Tsinghua University in Beijing have developed a gel which, like some proprietary glues, comes as two separate liquids into which cells can be added. These do not turn into a gel until the two liquids are actually mixed together during the printing process,” said Prof. Duncan in a release.

(more…)