Two researchers from Cornell University recently put forward research describing their development of an aluminum-based electrochemical cell that has the potential to capture carbon emissions while simultaneously generating electricity.

Globally, carbon dioxide is the number one contributor to harmful greenhouse gas emissions. These emissions accelerate climate change, leading to such devastating effects as rising sea levels that can dislocate families and radical local climates that hurt food production levels.

(MORE: Read past meeting abstracts by co-author of the research, Lynden A. Archer, for free.)

While there have been efforts to reduce the amount of carbon pumped into the atmosphere, the current levels are still far too high. Because of this, some researchers – including the duo from Cornell – have turned their attention to capturing carbon.

(more…)

Fossil fuel prices may be dropping, but according to new reports from Bloomberg’s New Energy Outlook, those prices will not affect the future of renewable energy.

According to the report, renewables are on pace to attract $7.8 trillion in investments by 2040. That’s nearly four times the amount that Bloomberg expects carbon-based power to attract over the same period of time.

Experts expect the relatively low fossil fuel prices to by offset by projected price drops of up to 60 percent in wind and solar technologies, making renewables the most efficient and most affordable option.

“Strikingly, [the report] still shows rapid transition toward clean power,” says Jon Moore, chief executive of Bloomberg New Energy Finance.

However, that transition may not be fast enough to counteract the effects of climate change. In order to keep the global temperate change below 2°C – a point that was emphasized in the Paris agreement – an additional $5.3 trillion would have to be invested in zero-carbon power on top of the $7.8 trillion.

When we think of carbon and the environment, our minds often develop a negative association between the two in light of things such as greenhouse gases and climate change. But what if carbon is the answer to clean energy?

A team of researchers at Griffith University is looking toward carbon to lead the way in the clean energy revolution. Their latest research showed that carbon could be used to produce hydrogen from water. This could offer a potential replacement for the costly platinum materials currently used.

“Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Xiangdong Yao, leader of the research group. “We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.”

(MORE: Learn about the future of electrochemical energy.)

This from Griffith University:

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Read the full article.

The researchers also believe that these findings could open the door for new development in large-scale water electrolysis.

Upcycling has become a huge trend in recent years. People are reusing and repurposing items that most wouldn’t give a second glance, transforming them into completely new, high-quality products. So what if we could take that same concept and apply it to the greenhouse gas emissions in the environment that are accelerating climate change?

An interdisciplinary team from UCLA is taking a shot at upcycling carbon dioxide by converting it into a new building material named CO2NCRETE, which could be fabricated by 3D printers.

“What this technology does is take something that we have viewed as a nuisance – carbon dioxide that’s emitted from smokestacks – and turn it into something valuable,” says J.R. DeShazo, senior member of the research team.

The fact that the team is attempting to produce a concrete-like material is also important. Currently, the extraction and preparation of building materials like concrete is responsible for 5 percent of the world’s greenhouse gas emissions. The upcycling of carbon could cut that number drastically all while reducing the enormous emissions being released from power plants (30 percent of the world’s emissions).

“We can demonstrate a process where we take lime and combine it with carbon dioxide to produce a cement-like material,” says Gaurav Sant, lead scientific contributor. “The big challenge we foresee with this is we’re not just trying to develop a building material. We’re trying to develop a process solution, an integrated technology which goes right from CO2 to a finished product.”

An interdisciplinary team, including 32 year ECS member Stuart Licht and ECS student member Matthew Lefler, has developed a way to make electric vehicles that are not only carbon neutral, but carbon negative – capable of reducing the amount of atmospheric carbon dioxide as they operate by transforming the greenhouse gas.

By replacing the graphite electrodes that are currently being used in the development of lithium-ion batteries for electric cars with carbon materials recovered from the atmosphere, the researchers have been able to develop a recipe for converting collected carbon dioxide into batteries.

This from Vanderbilt University:

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

Read the full article.

The research is not the first time scientists have shown progress in collecting and converting harmful greenhouse gases from the environment.

Typically, carbon dioxide conversion revolves around transforming the gas into low-value fuels such as methanol. These conversions often do not justify the costs.

(MORE: Read “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.“)

However, the new process produces better batteries that are not only expected to be efficient, but also cost effective.

(more…)

New Phase of Carbon Shows Unique Properties

q-carbonA new form of carbon that has unprecedented strength and magnetism properties is making its mark in the world of materials science.

Researchers from North Carolina State University have recently developed a new phase of carbon called Q-carbon—an extraordinarily strong material that differs from carbon’s other two solid forms.

The first solid phase of carbon is graphite. Graphite is composed by lining up carbon atoms to form thin sheets, which results in a thin and flaky material. The other phase of carbon, diamond, occurs when carbon atoms form a rigid crystal lattice.

Third Phase of Carbon

“We’ve now created a third solid phase of carbon,” says Jay Narayan, lead author of the research. “The only place it may be found in the natural world would be possibly in the core of some planets.”

Q-carbon differs from both existing phases of carbon, with unique characteristics that researchers did not even think were possible prior to its development, such as its magnetic and glowing qualities. To fully understand its novel qualities, it’s essential to understand how Q-carbon was developed.

(more…)

The "designer carbon" improved the supercapacitor's electrical conductivity threefold compared to electrodes made of conventional activated carbon.Image: Stanford University

The “designer carbon” improved the supercapacitor’s electrical conductivity threefold compared to electrodes made of conventional activated carbon.
Image: Stanford University

Stanford University researchers have developed a new “designer carbon” that can be fine-tuned for a variety of applications, including energy storage and water filters.

The newly developed carbon material has shown that it can significantly improve the power delivery rate of supercapacitors and boost the performance of energy storage technologies.

“We have developed a ‘designer carbon’ that is both versatile and controllable,” said Zhenan Bao, past member of ECS and the senior author of the study. “Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors.”

(PS: Check out some of Bao’s past papers in the Digital Library!)

Not only is the new carbon an improvement over existing versions, it also has a huge potential scope and is inexpensive to produce.

(more…)

What Is Penta-Graphene?

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.Image: VCU

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.
Image: VCU

Researchers from Virginia Commonwealth University (VCU) in conjunction with universities in China and Japan have discovered a new structural variant of carbon that they are coining “penta-graphene.”

The new material is comprised of a very thin sheet of pure carbon that is especially unique due to its exclusively pentagonal pattern. Thus far, the penta-graphene appears to be dynamically, thermally and mechanically stable.

“The three last important forms of carbon that have been discovered were fullerene, the nanotube and graphene. Each one of them has unique structure. Penta-graphene will belong in that category,” said the paper’s senior author and distinguished professor in the Department of Physics at VCU, Puru Jena in a press release.

The inspiration for this new development came from the pattern of the tiles found paving the streets of Cairo. Professor at Peking University and adjunct professor at VCU, Qian Wang, got the inspiration that inevitably led to penta-graphene while dining in Beijing.

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Chemical Sponge to Lessen Carbon Footprint

A new chemical sponge out of the University of Nottingham has the potential to lessen the carbon footprint of the oil industry.

Professor Martin Schröder and Dr. Sihai Yang of the University of Nottingham led a multi-disciplinary team from various institutions, which resulted in the discovery of this novel chemical sponge that separates a number of important gases from mixtures generated during crude oil refinement.

Crude oil has many uses – from fueling cars and heating homes to creating polymers and other useful materials. However, the existing process for producing this fuel has not been as efficient as it could possibly be.

(more…)

  • Page 2 of 3