By: William Bentley, University of Maryland and Gregory Payne, University of Maryland

CellsMicroelectronics has transformed our lives. Cellphones, earbuds, pacemakers, defibrillators – all these and more rely on microelectronics’ very small electronic designs and components. Microelectronics has changed the way we collect, process and transmit information.

Such devices, however, rarely provide access to our biological world; there are technical gaps. We can’t simply connect our cellphones to our skin and expect to gain health information. For instance, is there an infection? What type of bacteria or virus is involved? We also can’t program the cellphone to make and deliver an antibiotic, even if we knew whether the pathogen was Staph or Strep. There’s a translation problem when you want the world of biology to communicate with the world of electronics.

The research we’ve just published with colleagues in Nature Communications brings us one step closer to closing that communication gap. Rather than relying on the usual molecular signals, like hormones or nutrients, that control a cell’s gene expression, we created a synthetic “switching” system in bacterial cells that recognizes electrons instead. This new technology – a link between electrons and biology – may ultimately allow us to program our phones or other microelectronic devices to autonomously detect and treat disease.

(more…)

dahn-researchThe electric car industry is on the rise, but battery performance for these vehicles is still not where it needs to be to implement wide-scale usage. To address this issue, researchers from Dalhousie University have produced a ternary blend of electrolyte additives to improve the performance of the li-ion cell.

An open access paper recently published in the Journal of The Electrochemical Society (JES) details a novel development in electrolyte additives that, once applied to the li-ion cell, demonstrate a very high charge-discharge capacity.

The team began their study by investigating the performance of NMC pouch cells and electrolytes with various sulfur or phosphorus electrolyte additives.

They concluded that the new additive will improve the life cycle performance of the li-ion battery, as well as improve upon its safety.

(more…)

Lab-on-a-Chip to Improve Clinical Diagnostics

The new method, which uses beads and microfluidics can change the way we study mixed populations of cells, such as those of tumors. Image: EPFL

The new method, which uses beads and microfluidics can change the way we study mixed populations of cells, such as those of tumors.
Image: EPFL

Scientist have developed a process that has the potential to make the study of tumor cells significantly more efficient.

They call it a “lab-on-a-chip,” and it’s allowing scientist to isolate single cells for study. The key here is in the difficulty that scientists typically face when attempting to study a single cell in a population. Due to factors such as variation of the isolated cell’s biochemistry and function, and technological and physical limitation dealing with size and fragility of the cells, studying at the single-cell level has always proven to be difficult.

In order to combat this issue, Ecole Polytechnique Federale de Lausanne (EPFL) scientists have combined affinity beads with microfluidics to produce an integrated, highly sensitive method for studying single cells – which has the potential to be adopted into clinical diagnostics.

(more…)

45.7% Efficiency for Concentrator Solar Cell

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.Credit: NREL (Click to enlarge)

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.
Credit: NREL (Click to enlarge)

Improvements in solar power are being developed all around the world, with scientist and researchers continuously attempting to apply electrochemistry and other sciences to solar cells in order to improve efficiency. Recently, the National Renewable Energy Laboratory (NREL) has reported one of the highest photovoltaic cell efficiencies achieved across all types of solar cells.

Researchers at the NREL have demonstrated a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration.

(more…)

Old Blu-Ray Discs to Make Better Solar Panels

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.Credit: Northwestern University

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.
Credit: Northwestern University

Since its launch, the Blu-ray disc has been promoted as the bigger, better, and more impressive way to view movies at home. But researchers from Northwestern University are now telling us that Blu-ray discs are good for more than just giving us a better home viewing experience.

An interdisciplinary team from the McCormick School of Engineering and Applied Science at Northwestern University has published research stating that Blu-ray discs can be used to improve the performance of solar cells.

(more…)

New Microscope Collects Dynamic Images

Growing microtubule endpoints and tracks are color coded by growth phase lifetime.Credit: Betzig Lab, HHMI/Janelia Research Campus, Mimori-Kiyosue Lab, RIKEN Center for Developmental Biology

Growing microtubule endpoints and tracks are color coded by growth phase lifetime.
Credit: Betzig Lab, HHMI/Janelia Research Campus, Mimori-Kiyosue Lab, RIKEN Center for Developmental Biology

A new discovery out of Howard Hughes Medical Institute’s Janelia Research Campus is allowing biologists to see 3-D images of subcellular activity in real time.

They’re calling it lattice light sheet microscopy, and it’s providing yet another leap forward for light microscopy. The imaging platform was developed by Eric Betzig and colleagues in order to collect high-resolution images rapidly and minimize damage to cells.

Continue reading to check out the amazing video that shows the five different stages during the division of a HeLa cell as visualized by the lattice light sheet microscope.

(more…)