Ming Tang
Associate Professor
Department of Materials Science and NanoEngineering
Rice University, U.S.

Date: July 28, 2021
Time: 1000h ET
Sponsor: Hiden Analytical

During battery (dis)charging, lithium (de)intercalation in electrodes is usually spatially non-uniform across multiple length scales. Such a phenomenon is a major impediment to battery performance and life as it causes energy under-utilization and induces over-(dis)charging, etc. While reaction heterogeneity is often attributed to mass transport limitation, this talk highlights the important roles of thermodynamic factors including elastic energy and phase transformations, the understanding of which is important for the development of mitigation strategies. Through combined modeling and characterization, how stress could destabilize the lithium (de)lithiation front in single crystalline and polycrystalline intercalation compounds is elucidated. Also, a fundamental driving force for dendrite growth on the lithium metal anode during electrodeposition is provided. Stress relief thus offers a promising approach to improving reaction uniformity at the particle level. At the cell level, the reaction distribution that within the porous electrode is strongly influenced by how the electrode’s equilibrium potential varies with the state of charge, is discovered. Two types of prototypical reaction behavior emerge from common electrode materials with significant impact on the thick electrode performance. This finding leads to an efficient analytical model for optimizing battery configurations in place of common battery cell simulations. (more…)

The Electrochemical Society hosted Prof. John A. Rogers’ live online webinar, “Microfluidic Systems for the Skin: Quantitative Sensing of Biomarkers in Sweat,” on June 23, 2021. Below are answers to questions posed during the presentation.

NOTE: Registration is required to view the webinar.

Professor John A. Rogers is the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering, and Neurological Surgery at Northwestern University, with affiliate appointments in Mechanical Engineering, Electrical and Computer Engineering, and Chemistry. He is also Director of Northwestern’s recently endowed Querrey Simpson Institute for Bioelectronics. Rogers completed an SM in physics and chemistry in 1992, and PhD in physical chemistry in 1995, at the Massachusetts Institute of Technology. He was a Junior Fellow in the Harvard University Society of Fellows from 1995 to 1997; worked at Bell Labs from 1997 to 2002; then served on the faculty of the University of Illinois for 13 years. Rogers received many important awards including a MacArthur Fellowship and membership in the National Academies of Engineering, Sciences, Medicine, Inventors, and the American Academy of Arts and Sciences. Rogers has published more than 750 papers, is a co-inventor on more than 100 patents, and co-founded several successful technology companies.   (more…)

Chockkalingam (Chock) Karuppaiah
Founder and Chairman, Vetri Labs, U.S.
Chief Technology Officer, Ohmium, U.S.

Date: July 14, 2021
Time: 1300h ET
Sponsor: Gamry Instruments & Hiden Analytical

Be it improving energy density or cycle life or reducing cost, understanding the failure modes of batteries in a non-destructive mode is critical during the design, product development, and manufacturing of lithium ion batteries. Electrochemical impedance spectroscopy (EIS) provides the ability to access and decouple the failure modes based on the processes’ time scale. Analysis of recorded EIS can be done either through phenomenological modelling or equivalent circuit modelling, with each having its own pros and cons.

This webinar reviews the basics of applying EIS for understanding the phenomena in lithium ion batteries, the experimental details and protocols, and the types of models with a few case studies. (more…)

John Rogers
Professor
Northwestern University, U.S.

Date: June 23, 2021
Time: 1000h EDT
Sponsor: Hiden Analytical

Recent advances in materials, mechanics, and manufacturing establish the foundations for high performance classes of microfluidic lab-on-a-chip technologies that have physical properties matched to those of human skin. The resulting devices can integrate with the surface of the skin in a water-tight yet physically imperceptible fashion, to provide continuous, clinical-quality biochemical information on physiological status via capture, storage, and in situ analysis of sweat. This talk summarizes key ideas and presents specific recent examples in skin-interfaced microfluidic technologies designed for applications in sports performance, worker safety, and nutritional monitoring. (more…)

The Electrochemical Society hosted Prof. Jill Venton’s live webinar, “Novel Carbon Electrodes for Neurochemistry,” on May 26, 2021. Below are answers to questions posed after the presentation.

NOTE: Registration is required to view the webinar.

Dr. B. Jill VentonDr. B. Jill Venton is Professor and Chair of the Department of Chemistry at the University of Virginia (UVA), U.S. She is also affiliated with the Neuroscience Graduate Program and UVA Brain Institute. Dr. Venton received her BS in Chemistry from the University of Delaware, U.S.; her PhD in Chemistry from The University of North Carolina at Chapel Hill, U.S.; and did postdoctoral research at the University of Michigan, U.S. Her career at UVA started in 2005 and she became Chair of the Department of Chemistry in 2019. The Venton Group’s research focuses on developing analytical chemistry tools for neuroscience research. The lab studies many neuroscience diseases, from Parkinson’s, to addiction, stroke, and aging.

Q&A

Is it a normal practice to have widely different concentrations of analyte while comparing their CVs? (more…)

Jill Venton
Professor and Chair
Department of Chemistry
University of Virginia, U.S.

Date: May 26, 2021
Time: 1300h EDT

This webinar discusses the latest strategies in making customized carbon electrodes for neurotransmitter detection. Various carbon nanomaterials are reviewed, including carbon nanotube yarns and carbon nanospikes. In addition, we examine how 3D printing can be used to make small, custom geometry carbon electrodes.

(more…)

The Electrochemical Society hosted Prof. Jenny Pringle’s live webinar, “The Development of New Ionic Electrolytes for Energy Storage Devices” on April 21, 2021. Her answers to questions that followed the presentation are provided below.

NOTE: Registration is required to view the webinar.

Prof. Jenny Pringle works in the Institute for Frontier Materials at Deakin University, Australia, as a chief investigator in the ARC Centre of Excellence for Electromaterials Science (ACES) and the ARC Industrial Transformation Training Centre “StorEnergy.” She received her undergraduate degrees and PhD at The University of Edinburgh, Scotland, before moving to Monash University, Australia, in 2002. From 2008-2012, she held an ARC Queen Elizabeth II Fellowship investigating the use of ionic electrolytes for dye-sensitized solar cells. Pringle moved to Deakin University in 2013. There she leads research into the development of new ionic liquids and organic ionic plastic crystals for applications including thermal energy harvesting, gas separation membranes, and lithium and sodium batteries. (more…)

Kelsey B. Hatzell
Assistant Professor of Mechanical Engineering
Assistant Professor of Chemical and Biomolecular Engineering
Flowers Family Dean’s Faculty Fellow in Engineering
Vanderbilt University, U.S. 

Date: May 5, 2021
Time: 1300h EDT
Sponsor: Hiden Analytical

(more…)

Professor Jenny Pringle
Associate Professor
Institute for Frontier Materials, Deakin University
Melbourne, Australia

Date: April 21, 2021
Time: 1300h EDT
Sponsor: Hiden Analytical

(more…)

Dr. Ranjani Viswanatha
Associate Professor
Jawaharlal Nehru Centre for Advanced Scientific Research, India

Date: April 14, 2021
Time: 1000h ET
Sponsor: Hiden Analytical

(more…)

  • Page 6 of 9