After a short hiatus, Clean Technica’s Celantech Talk podcast has returned. For their first episode back, ECS member and podcast co-host Matthew Klippenstein discusses speed bumps in renewable energy, transforming the grid, and the demise of diesel.

Klippenstein is a 13 year veteran of the fuel cell industry with Ballard Power Systems. He was part of the 2007 group that received ECS’s Industrial Electrochemistry and Electrochemical Engineering Division New Electrochemical Technology Award, which has recognized significant advances in industrial electrochemistry since 1997. Listen to the podcast below.

PS: To learn more about science and some of the key contributors, download the ECS Podcast for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Uphill Battle for Electric Cars

With plunging oil prices, it is proving to be more difficult than ever to entice buyers into purchasing an electric vehicle. While the low oil prices may be good for consumers’ gas tanks, the transportation sector continues to account for 27 percent of the United States’ greenhouse gas emissions.

The question then arises of how electric car manufacturers can steer folks back toward electric vehicles and away from gas-guzzling cars?

(MORE: Read Interface: PV, EV, and Your Home)

Impact of falling oil prices

“It definitely makes the transition to sustainable energy more difficult,” said Elon Musk, Tesla CEO, at a business conference in Hong Kong about the impact of the free-falling oil prices.

Tesla rose to prominence in 2003 when oil prices soared, making electric vehicles all the more tempting. With oil prices continually on the decline, it’s now up to companies like Tesla to compel buyers and stress the importance of transitioning toward cleaner vehicles.

New features for electric cars

For companies like Tesla, that means developing things like autonomous cars with “summon” features – allowing the user to call their car just like a pet. Even aesthetic aspects have become more important, with Tesla focusing on futuristic designs.

“What we’re aspiring to do is to make the cars so compelling that even with lower gas prices, it’s still the car you want to buy,” Musk said.

(more…)

Apple Expected to Release Car by 2019

Even after the release of the highly anticipated iPhone 6s, Apple remains in the spotlight with the announcement of the company’s potential electric car.

Apple’s entrance into the electric car race puts them up against competitors such as Tesla and Google. The company aims to follow a Tesla path rather than Google—delivering cars directly to the consumers rather than selling the technology to established automobile manufactures. It is expected that the first iCar (presumed name) will hit the market by 2019.

Electric Car Race

These companies are not the only ones interested in green energy alternatives for automobiles. Car manufactures such as Toyota are also directing their attention to this topic. Aside from the release of the Toyota Prius PHV, the company has also allowed for royalty-free use of their fuel cell patents and has recently partnered with ECS to fund new projects in green energy technology.

Technology companies and automobile makers alike are transitioning away from gas-guzzling vehicles to environmentally friendly automobiles, utilizing hydrogen and electric power more frequently. This is in part due to consumer concern regarding climate change and danger of increased greenhouse gas emissions.

(more…)

There are more than 250 million cars and trucks on U.S. roads. From these vehicles, roughly 135 billion gallons of gasoline are consumed each year in the United States. In fact, 28 percent of energy used in the country is in the transportation sector.

While many may think that the majority of this consumption would come from planes or trains, personal cars and trucks actually consume 60 percent of all energy used here. Unfortunately, most of that energy is lost to heat and other inefficiencies within the vehicles, leaving only about 10 to 16 percent of a car’s fuel being used to actually drive and overcome road resistance.

However, the researchers at Virginia Tech may have a partial solution to this problem: harvesting energy from a car’s suspension.

(more…)

viswanathan-news-brief-chart_500x429-minLithium-air batteries are—in theory—an extremely attractive alternative for affordable, efficient energy storage for electric vehicles. However, as researchers explore this technology, they are met with many critical challenges. If researchers can overcome these challenges, there is a great likelihood that the lithium-air battery will surpass the energy density of today’s lithium-ion battery.

Researchers from Carnegie Mellon University and the University of California, Berkley feel like they may have part of the answer to this critical challenge, which could propel the practicality of the lithium-air battery. The team, which included researchers from Bryan McCloskey and Venkat Viswanathan‘s laboratories, has found a way to both increase the capacity while preserving the recharge ability of the lithium-air battery by blending different types within the battery’s electrolytes.

“The electrolytes used in batteries are just like Gatorade electrolytes,” says Venkat Viswanathan, assistant professor of mechanical engineering at Carnegie Mellon. “Every electrolyte has a solvent and a salt. So if you take Gatorade, the solvent would be water and the salt would be something like sodium chloride, for instance. However, in a lithium air battery, the solvent is dimethoxyethane and the salt is something like lithium hexafluorophosphate.”

(more…)

Sparking the Driverless Car Era

We’ve been hearing about the new generation of vehicles for some time now. The self-driving, autonomous, electric car seemed to be so distant that it transformed into a pipe dream—until now. Tesla CEO Elon Musk announced this past week that Tesla’s self-driving cars will hit highways this summer.

On Thursday March 18, Musk arranged a press conference to talk about Tesla’s automobile software update that will eliminate range anxiety—or the fear that your electric car will run out of power before being able to recharge on long trips.

But that wasn’t the highlight of the press conference. Musk casually announced that beginning around June, all Tesla models well get an update that allows them to drive in “Autopilot” mode.

(more…)

New Tire Harnesses Heat to Power Your Car

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.Image: YouTube/Goodyear

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.
Image: YouTube/Goodyear

There’s no question that engineers and manufacturers around the world are moving away from the fuel-based car to the electric vehicle. In order to make these cars possible, they must improve in efficiency. Now, one company is looking outside the box for the answer to electric car sustainability.

Goodyear has just announced the concept of their new tire, which will harvest heat in a variety of ways to help power electric vehicles. The new BH-03 tire is poised to be able to absorb heat while static due to the ultra-black texture of the tire, as well as take advantage of the natural occurrence of friction as the tire moves.

(more…)

A New Generation of Electric Car Battery

Scientists out of the University of Waterloo are one step closer to inventing a cheaper, lighter and more powerful rechargeable battery for electric vehicles. At the heart of this discovery lies a breakthrough in lithium-sulfur batteries due to an ultra-thin nanomaterial.

This from the University of Waterloo:

Their discovery of a material that maintains a rechargeable sulfur cathode helps to overcome a primary hurdle to building a lithium-sulfur (Li-S) battery. Such a battery can theoretically power an electric car three times further than current lithium-ion batteries for the same weight – at much lower cost.

(more…)

Member Spotlight – Stephen Harris

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.Image: Rich Saykally, Berkeley Labs

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.
Image: Rich Saykally, Berkeley Labs

The Electrochemical Society’s Stephen Harris, along with a team of researchers from  Berkeley Lab, have found a possible avenue to a better electrolyte for lithium-ion batteries.

Harris – an expert on lithium-ion batteries and chemist at Berkeley Lab’s Materials Science Division – believes that he and his team have unveiled something that could lead to applying lithium-ion batteries to large-scale energy storage.

Researchers around the world know that in order for lithium-ion batteries to store electrical energy for the gird or power electric cars, they must be improved. The team at Berkeley decided to take on this challenge and found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrode, which has provided a better understanding of the liquid electrolyte.

Previous simulations have predicted a tetrahedral solvation structure for the lithium-ion electrolyte, but the new study yields different results.

(more…)

Until now, the motor and the inverter, which converts the battery's direct current into alternating current for the motor, were two separate components.Credit: Siemns

Until now, the motor and the inverter, which converts the battery’s direct current into alternating current for the motor, were two separate components.
Credit: Siemens

A team of engineers at Siemens’ has developed a way to save space, reduce weight, and cut the cost of electric car production. The team’s solution revolves around integrating an electric car’s motor and inverter, which have always been two separate components prior to this development.

This from Siemens:

The solution’s key feature is the use of a common cooling system for both components. This ensures that the inverter’s power electronics don’t get too hot despite their proximity to the electric motor, and so prevents any reduction in output or service life.

Read the full article here.

Accordingly, the weight of the vehicle is reduced due the integration of the inverter into the motor, which will now only need a single housing. Additionally, the development produces added installation space that can be used for a charging unit.

For more information on current and future developments in the electric car industry, check out some of our past coverage or head over to the Digital Library to see what our scientists are working on.

  • Page 1 of 2
    • 1
    • 2