Call for Papers

The ECS Journal of Solid State Science and Technology is publishing a special collection of papers being presented at the International Conference on Advanced Materials and Mechanical Characterization (ICAMMC-2021). The meeting takes place December 2-4, 2021 in virtual format. 

ICAMMC 2021 covers a wide range of emerging inter- and multi-disciplinary topics in developing advanced materials and their characterization at multiple length scales, manufacturing, and growth of innovative materials. It is an international forum for sharing knowledge and results in theory, computation, synthesis, fabrication, and characterization of advanced materials in structural, microstructural, small-scale mechanical aspects (not limited to), structure-property correlations, and technological applications. It is a common platform to present and discuss path-breaking research ideas and is expected to be an interface between academia and industry for societal needs. This focus issue centers on the advancements in design/fabrication, characterization and properties of next-generation materials for energy, electronic and dielectric applications. (more…)

Chuanfang (John) Zhang, Valeria Nicolosi, and Sang-Hoon Park. Credit: Naoise Culhane

Have you ever wished you could increase your cellphone battery life? Well, that technology may very well already be here.

Researchers from AMBER, the Science Foundation Ireland Research Centre for Advanced Materials and BioEngineering, at Trinity College Dublin, have announced the development of a new material which offers the potential to improve battery life in everyday electronics, like smartphones, according to Irish Tech News.

The discovery could mean that the average phone battery life, roughly 10 hours of talk time, could increase to 30-40 hours.

MXenes, an ink-based nanomaterial, not only significantly improves battery life, but it also offers its batteries the flexibility to become smaller in size, without losing performance. (more…)

ElectronicsA new process for growing wafer-scale 2D crystals could enable future super-thin electronics.

Since the discovery of the remarkable properties of graphene, scientists have increasingly focused research on the many other two-dimensional materials possible, both those found in nature and those concocted in the lab.

Growing high-quality, crystalline 2D materials at scale, however, has proven a significant challenge.

Researchers led by Joan Redwing, director of the National Science Foundation-sponsored Two-Dimensional Crystal Consortium—Materials Innovation Platform, and professor of materials science and engineering and electrical engineering at Penn State, developed a multistep process to make single crystal, atomically thin films of tungsten diselenide across large-area sapphire substrates.

(more…)

Scientists who introduced laser-induced graphene (LIG) enhanced their technique to produce what may become a new class of edible electronics.

The chemists, who once turned Girl Scout cookies into graphene, are investigating ways to write graphene patterns onto food and other materials to quickly embed conductive identification tags and sensors into the products themselves.

“This is not ink,” says James Tour, chair of chemistry and professor of computer science and of materials science and nanoengineering at Rice University. “This is taking the material itself and converting it into graphene.”

(more…)

ECS Journal of Solid State Science and TechnologyIn a recently published ECS Journal of Solid State Science and Technology paper, ECS member Roger Loo and coauthors describe a new epitaxial growth technology and address the challenges of implementation. The open access article, “Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures,” was designated Editors’ Choice due to its significance and the importance of the technology described.

“The work combines carefully thought out and elegant experimental work, with appropriate simulation work that compliments the experiments,” said Jennifer Bardwell, ECS Journal of Solid State Science and Technology technical editor in the area of electronic materials and processing. “I am certain that it will be of great interest to many of our readers.”

We recently sat down with Loo to discuss the work and its impact on the field.

(more…)

ElectronsWhile tracking electrons moving through exotic materials, researchers have discovered intriguing properties not found in conventional, silicon-based semiconductors.

Unlike current silicon-based electronics, which shed most of the energy they consume as waste heat, the future is all about low-power computing. Known as spintronics, this technology relies on a quantum physical property of electrons—up or down spin—to process and store information, rather than moving them around with electricity as conventional computing does.

On the quest to making spintronic devices a reality, scientists at the University of Arizona are studying an exotic crop of materials known as transition metal dichalcogenides, or TMDs. TMDs have exciting properties lending themselves to new ways of processing and storing information and could provide the basis of future transistors and photovoltaics—and potentially even offer an avenue toward quantum computing.

(more…)

GrapheneNew graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent, researchers report.

The nanotechnology “would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation,” according to the new paper.

“We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” says Jonathan Claussen, an assistant professor of mechanical engineering at Iowa State University, an associate of the US Department of Energy’s Ames Laboratory, and the corresponding author of the paper in the journal Nanoscale.

(more…)

TransistorIncorporating organic electronic materials in the field of bioelectronics has indicated promising potential in interfacing with biological systems, including neuroscience applications. Researchers from Linköping University are taking a major step forward in that work with their development of the world’s first complementary electrochemical logic circuits that can function for long periods of time in water.

While the first printable organic electrochemical sensors appeared as early as 2002, significant advancements have developed in a few years. Organic components such as light-emitting diodes and electrochemical displays are already commercially available.

This from Linköping University:

The dominating material used until now has been PEDOT:PSS, which is a p-type material, in which the charge carriers are holes. In order to construct effective electron components, a complementary material, n-type, is required, in which the charge carriers are electrons.

(more…)

Researchers have developed an inexpensive and scalable technique that can change plastic’s molecular structure to help it cast off heat.

Advanced plastics could usher in lighter, cheaper, more energy-efficient product components, including those used in vehicles, LEDs, and computers—if only they were better at dissipating heat.

The concept can likely be adapted to a variety of other plastics. In preliminary tests, it made a polymer about as thermally conductive as glass—still far less so than metals or ceramics, but six times better at dissipating heat than the same polymer without the treatment.

“Plastics are replacing metals and ceramics in many places, but they’re such poor heat conductors that nobody even considers them for applications that require heat to be dissipated efficiently,” says Jinsang Kim, a materials science and engineering professor at the University of Michigan. “We’re working to change that by applying thermal engineering to plastics in a way that hasn’t been done before.”

(more…)

Instead of batteries, a new cell phone harvests the few microwatts of power it needs from a different source: ambient radio signals or light.

Researchers were also able to make Skype calls using the battery-free phone, demonstrating that the prototype—made of commercial, off-the-shelf components—can receive and transmit speech and communicate with a base station.

“We’ve built what we believe is the first functioning cell phone that consumes almost zero power,” says Shyam Gollakota, an associate professor of computer science & engineering at the University of Washington and coauthor of the paper.

“To achieve the really, really low power consumption that you need to run a phone by harvesting energy from the environment, we had to fundamentally rethink how these devices are designed.”

Researchers eliminated a power-hungry step in most modern cellular transmissions—converting analog signals that convey sound into digital data that a phone can understand. This process consumes so much energy that it’s been impossible to design a phone that can rely on ambient power sources.

(more…)

  • Page 1 of 4