7 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Postdoctoral Research Associate in Chemical Engineering
Case Western Reserve University – Cleveland, Ohio
The Postdoctoral Research Associate will conduct research and development on titanium electrowinning from molten salts. Technical responsibilities will include high-temperature electrochemical reactor design and fabrication, experimental investigations of electrodeposition from molten salts, and some mathematical modeling studies.

(more…)

Let’s Hear It for LEDs

More and more households are using LED light bulbs due to improved efficiency, reliability, and now a more affordable cost over their incandescent cousins. With droves of scientists researching in the area of LED and producing new developments, these bulbs are beginning to become the new norm.

Let’s take a look at the journey the LED bulb has gone though thus far.

(more…)

First Solar-Powered Bike Lane in Netherlands

SolaRoad coverts sunlight on the road surface into electricity: the road network works as an inexhaustible source of green power.Credit: SolaRoad

SolaRoad converts sunlight on the road surface into electricity: the road network works as an inexhaustible source of green power.
Credit: SolaRoad

A solar-powered cycle path – called SolaRoad – has been unveiled in the Netherlands. The path can generate enough electricity to power three households, reports BBC.

The new path has been installed in Kormmenie, which is 25 kilometers from Amsterdam. While the path is currently 70 meters long, it will be extended to 100 meters by 2016.

Dr. Sten de Wit from SolaRoad believes that this is just the beginning for solar-powered paths. Dr. de Wit foresees solar roads eventually being used to power the electric vehicles that use them, similar to Dutch developer Heijmans and designer Daan Roosegaard in their “smart highway.”

(more…)

Toyota’s Fuel Cell Car Unveiled

Recently, fuel cells have been the hot topic in energy discussions. In accordance with this, Toyota has introduced its first mass-market fuel cell car that will be available for purchase next month.

The company is calling the four-seat sedan Mirai, which means “future” in Japanese. The car will first go on sale in Japan on December 15th, followed by sales in the United States and Europe in the fourth quarter of 2015.

This from Reuters:

The ultimate “green car”, fuel cell vehicles (FCVs) run on electricity made by mixing hydrogen fuel and oxygen in the air – a technology first used in the Apollo moon project in the 1960s. Its only by-product is heat and water – water so pure the Apollo astronauts drank it.

(more…)

3 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid-state science. Check out the latest openings that have been added to the board:

Post-Doctoral Research Associate
North Carolina State University – Raleigh, North Carolina
The Postdoctoral Research Associate will focus his/her work on research and development of new lithium-sulfur batteries. The work includes the development of both electrode and electrolyte materials and the integration of these materials into lithium-sulfur batteries. The Postdoctoral Research Associate will be responsible on designing and carrying out experiments, analyzing data, writing reports, and/or help mentoring junior researchers to conduct their research.

(more…)

Member Spotlight – Chanyuan Liu

Chanyuan Liu

Chanyuan Liu, ECS member and Ph.D. student at the University of Maryland, is the lead author on the nanopore study.
Credit: University of Maryland

The Electrochemical Society’s Chanyuan Liu, along with a team of University of Maryland researchers, believe they have developed a structure that could bring about the ultimate miniaturization of energy storage components.

The tiny structure, known as the nanopore, includes all the components of a battery and can be fully charged in 12 minutes and recharged thousands of times.

This from University of Maryland:

The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end. The existing device is a test, but the bitsy battery performs well.

(more…)

Smart Streets: The Highway Is Getting Brighter

The painted road markings are said to be able to glow up to eight hours in the dark.Credit: Roosegaarde

The painted road markings are said to be able to glow up to eight hours in the dark.
Credit: Roosegaarde

There has been a great deal of debate and innovation in smart cars recently, but why just stop at the car? Why not make a smart highway?

At least that’s the question Dutch developer Heijmans and designer Daan Roosegaard are asking. Since 2012 the duo have been talking about and drumming up game plans for innovative designs that would improve road sustainability, safety, and perception.

These ideas include: electric priority lane, which would allow electric cars to charge themselves while driving; dynamic paint, which would glow or become transparent upon sensing temperature in order to let you know road conditions; and interactive light, which would be controlled by sensors to active only when traffic approaches in order to create sustainable road light.

But the company’s main, and most tangible, development is their glow-in-the-dark lining.

(more…)

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Topics of interest include but are not limited to:

  • Printable functional materials: metals; organic conductors; organic and inorganic semiconductors; and more
  • Functional printed devices: RFID tags and antenna; thin film transistors; solar cells; and more
  • Advances in printing and conversion processes: ink chemistry; ink rheology; printing and drying process; and more
  • Advances in conventional and emerging printing techniques: inkjet printing; aerosol printing; flexographic printing; and more

Find out more!

Deadline for submission of manuscripts is November 30, 2014.

Please submit manuscripts here.

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat. With particle sizes ranging from 10 nanometers to 10 micrometers, the multiscale structure traps and absorbs light more efficiently and at temperatures greater than 700 degrees Celsius.Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat.
Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

An engineering team from the University of California, San Diego, has developed a new nanoparticle-based material for concentrating solar power. The new research, which has been funded by the U.S. Department of Energy’s SunShot program and published in the journal Nano Energy, aims to convert 90 percent of captured light into heat and make solar costs more competitive.

The new material will be able to withstand temperatures greater than 700° Celsius and can survive many years outdoors, despite exposure to humidity.

“We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering.

This from the University of California, San Diego:

The novel material features a “multiscale” surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The multiscale structures can trap and absorb light which contributes to the material’s high efficiency when operated at higher temperatures.

Read the full article here.

Head over to our Digital Library and read more research by Sungho Jin, one of the developers of the Silicon boride-coated nanoshell material.

Not Your Average Light Bulb

Thermal management represents about 25-30 percent of total costs in a LED bulb, second only to the LEDs themselves.Credit: Cree

Thermal management represents about 25-30 percent of total costs in a LED bulb, second only to the LEDs themselves.
Credit: Cree

LED maker Cree has introduced a new consumer bulb that costs less, lasts longer, and consumes less energy than the traditional bulb.

The company’s new bulb does not use the heats sinks that LED bulbs typically use. An LED bulb’s metal collar or other heat sink serves to draw away heat from the bulb to ensure a long life. Accordingly, this makes the bulb more expensive and give it a bulky look.

By eliminating the heat sink, Cree lowered the bulb cost from $9.97 for a “soft white” 40-watt to $7.97.

This from IEE Spectrum:

In its new design, heat is removed from the LEDs through convection, or a flow of air through the bulb. The LEDs are mounted on circuit boards, rather than the metal tower. As the diodes heat up, they draw air from outside the bulb through small vent-like openings at the base and on the top. Because hot air rises, air flows continually through the bulb to cool the LEDs. The airflow circulates whether the bulb is vertical, horizontal or upside down, Watson says.

Read the full article here.

The new generation bulb will last 25,000 hours and consume 85 percent less energy than an incandescent bulb.

Want to know what the future has in store for LEDs? Check out what our scientists have been researching to propel this technology. While you’re over there, sign up for our e-Alerts so you are up-to-date on what is happening in the world  of electrochemical and solid state science and technology.