Venkataraman Thangadurai, University of Calgary chemistry professor and associate head.

University of Calgary Chemistry Professor Venkataraman Thangadurai’s background in solid-state batteries, solid oxide fuel cells, proton conducting SOFCs, and gas sensors have made him a source for information over the years. Because of this, the longtime ECS and battery division member has been invited to present several presentations this spring.

International Battery Event

This March,  Thangadurai will speak at the International Battery Seminar & Exhibit taking place in Fort Lauderdale, Florida. The annual event showcases state of the art energy storage technology developments for consumer, automotive, military, and industrial applications, as well as offer attendees insights from guest speakers sharing their thoughts on significant material advancements, product development, manufacturing, and application of battery systems and enabling technologies.

ECS Biannual Meetings

Similar to the International Battery Seminar & Exhibit, ECS hosts biannual meetings on a broader scale, including a diverse number of topics in the electrochemical, solid state science, and technology field, of which Thangadurai has been a recurring speaker of.

In 2018, he attended AiMES as an invited guest speaker presenting his work, “Chemical and Electrochemical Stability of Fast Lithium Ion Conducting Garnet-Type Metal Oxides in H2o, Aqueous Solution, CO2, Li and S,” available in ECS Meeting Abstracts.

(more…)

Shirley Meng: Becoming an Engineer

Shirley Meng

Shirley Meng

Inspired by her father, motivated by curiosity, and driven by her passion for connecting people, Shirley Meng, a professor of nanoengineering at the University of California, San Diego, discovered her love for science.

Although, she had originally thought her interests would lead her to pursue another path, a career in law.

However, because of the instability of the law system in China, where Meng is originally from, her father encouraged Meng to pursue other opportunities. That’s when she began considering a career in the sciences. (more…)

ECEE 2019 Late Poster Session

Interested in presenting at The Electrochemical Conference on Energy and the Environment (ECEE 2019): Bioelectrochemistry and Energy Storage meeting in Glasgow, but missed the abstract deadline? Submit an abstract for a poster presentation on bioelectrochemistry and energy storage!

The purpose of the ECEE meetings is to focus on electrochemical energy conversion/storage materials, concepts, and systems, with the intent to bring together scientists, engineers, and researchers to share results and discuss issues on these topics.

The abstract deadline is May 31.

Submit now!

The 2018 San Francisco Section Daniel Cubicciotti Student Award Goes to Yuzhang Li!

Yuzhang Li is a PhD student working with Professor Yi Cui on next-generation energy storage technologies at Stanford University. His research approach seeks to tackle problems from both an applied and fundamental perspective, which is necessary for the development of high energy density batteries. (more…)

Submit Your Abstract for ECEE 2019

Abstract submission for ECEE 2019 is now open!

Join us at the Electrochemical Conference on Energy and the Environment (ECEE 2019): Bioelectrochemistry and Energy Storage, which will be held in Glasgow, Scotland from July 21-26, 2019 at the Scottish Exhibition and Conference Center.

(more…)

Photo Credit: www.HydroQuebec.com

Hydro-Québec (an ECS institutional member) and the U.S. Army Research Laboratory have announced a breakthrough in the lithium-ion battery materials field, publishing their research results in the Journal of Power Sources. Using a cathode made with new high voltage safe materials, the researchers have achieved a world first: building a 1.2 Ah lithium-ion cell with a voltage of 5 V.

“With the high voltage of this new cell, we can reach a very high energy density,” says Karim Zaghib, General Director of the Center of Excellence in Transportation Electrification and Energy Storage. “This highly desirable property can improve batteries used in a wide range of applications.” Army Research Laboratory scientists Jan Allen and Richard Jow, also inventors of this high voltage cathode material, believe that the high cell voltage can, in addition to enabling high energy density, improve the design of devices.

Lithium-ion batteries are widely used to power many electronic devices, including smartphones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. In response to the growing demand for their use in a wide range of products, there are many teams working to improve their storage capacity. In particular, there is great interest in developing new compounds that could increase energy storage capacity, stability and lifespan. That is why the innovation announced today has such a strong commercial potential.

(more…)

By: Bob Marcotte, University of Rochester 

Electric GridIn order to power entire communities with clean energy, such as solar and wind power, a reliable backup storage system is needed to provide energy when the sun isn’t shining and the wind doesn’t blow.

One possibility is to use any excess solar- and wind-based energy to charge solutions of chemicals that can subsequently be stored for use when sunshine and wind are scarce. At that time, the chemical solutions of opposite charge can be pumped across solid electrodes, thus creating an electron exchange that provides power to the electrical grid.

The key to this technology, called a redox flow battery, is finding chemicals that can not only “carry” sufficient charge, but also be stored without degrading for long periods, thereby maximizing power generation and minimizing the costs of replenishing the system.

(more…)

Focus IssueThe Journal of The Electrochemical Society Focus Issue on Lithium-Sulfur Batteries: Materials, Mechanisms, Modeling, and Applications is now complete, with 18 open access papers published in the ECS Digital Library.

“Lithium sulfur batteries are in the focus of research at many hundreds of prominent research groups throughout the world and at several industrial firms as well,” says JES Technical Editor Doron Aurbach in the issue’s preface. “These batteries are highly attractive due to their theoretical high energy density, that may be 4–5 times higher compared to that of Li-ion batteries.”

The focus issue includes invited papers and selected papers from the 2017 Li-SM3 Conference.

“The important technical challenges of Li-S batteries are dealt with in the papers of this focus issue, including development of new sulfur cathodes, protected Li anodes, new electrolyte systems including solid state electrolytes, study of degradation mechanisms, in-situ spectroscopic efforts, surface and structural aspects,” Aurbach continues. “This focus issue of JES is indeed a very suitable epilogue for a very successful and fruitful meeting on a very “hot” topic in modern electrochemistry in general and advanced batteries in particular.”

Read the full JES Focus Issues on Lithium-Sulfur Batteries: Materials, Mechanisms, Modeling, and Applications.

By: Naga Srujana Goteti, Rochester Institute of Technology; Eric Hittinger, Rochester Institute of Technology, and Eric Williams, Rochester Institute of Technology

Renewable grideCarbon-free energy: Is the answer blowing in the wind? Perhaps, but the wind doesn’t always blow, nor does the sun always shine. The energy generated by wind and solar power is intermittent, meaning that the generated electricity goes up and down according to the weather.

But the output from the electricity grid must be controllable to match the second-by-second changing demand from consumers. So the intermittency of wind and solar power is an operational challenge for the electricity system.

Energy storage is a widely acknowledged solution to the problem of intermittent renewables. The idea is that storage charges up when the wind is blowing, or the sun is shining, then discharges later when the energy is needed. Storage for the grid can be a chemical battery like those we use in electronic devices, but it can also take the form of pumping water up a hill to a reservoir and generating electricity when letting it flow back down, or storing and discharging compressed air in an underground cavern.

(more…)

A new water-based air-conditioning system cools air to as low as 18 degrees Celsius (about 64 degrees Fahrenheit) without using energy-intensive compressors and environmentally harmful chemical refrigerants.

This technology could potentially replace the century-old air-cooling principle that is still used in modern-day air-conditioners. Suitable for both indoor and outdoor use, the new system is portable and can be customized for all types of weather conditions.

The team’s novel air-conditioning system is cost-effective to produce, and it is also more eco-friendly and sustainable.

(more…)

  • Page 3 of 13