Making Poop Potable

The OmniProcessor is the ultimate example of that old expression: one man's trash is another man's treasure.Image: YouTube/Gates Notes

The OmniProcessor is the ultimate example of that old expression: one man’s trash is another man’s treasure.
Image: YouTube/Gates Notes

The Bill & Melinda Gates Foundation is working to turn poop into drinking water with this ingenious new machine.

As part of their effort to improve sanitation in poor countries, the Gates Foundation has helped give flight to an OmniProcessor that burns human waste to produce water and electricity.

How does it work? Check out the video to see the process.

But here’s the big question – why do we need to turn waste into drinking water and electricity?

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Sensors Meet Sports: The ‘Smart’ Helmet

A UW senior medical engineer explains how the smart helmet can aid to player safety by using sensor technology.Credit: Andy Manis/Journal Sentinel

A UW senior medical engineer explains how the smart helmet can aid in player safety by using sensor technology.
Credit: Andy Manis/Journal Sentinel

Students at the University of Wisconsin-Madison are not just interested in improving technology and creating innovative design, but rather they are determined to make us rethink the way the physical and digital world interact.

These students have spent months in the University’s Internet of Things Lab, where they work to measure, monitor and control the physical world by heightening its interaction with the Internet.

The main innovation that the lab has developed is a football helmet that can detect injuries.

Cross-disciplinary teams of students have come together to develop a high-tech football helmet that has brain wave probes and a device that measures acceleration forces, which gives the ability to detect concussions on the field and directly communicate the information to medical staff.

(more…)

Layers of Logic Produce Skyscraper Chips

Stanford engineers have created a four-layer prototype high-rise chip. The bottom and top layers are transistors, which are sandwiched between two layers of memory.
Credit: Max Shulaker, Stanford

Cheaper, smaller, and faster – those are the three words we’re constantly hearing when it comes to innovation and development in electronics. Now, Stanford University engineers are adding a fourth word to that mantra – taller.

The Stanford team is about to reveal how to build a high-rise chip that could vault the performance of the single-story logic and memory chips on today’s circuit cards – thereby preventing the wires connecting logic and memory from jamming.

This from Stanford University:

The Stanford approach would end these jams by building layers of logic atop layers of memory to create a tightly interconnected high-rise chip. Many thousands of nanoscale electronic “elevators” would move data between the layers much faster, using less electricity, than the bottleneck-prone wires connecting single-story logic and memory chips today.

(more…)

ACS Leader Reflects on Legacy

Madeleine Jacobs, Chief Executive Officer and Executive Director  of the American Chemical Society.Credit: Peter Cutts

Madeleine Jacobs, Chief Executive Officer and Executive Director of the American Chemical Society.
Credit: Peter Cutts

Madeline Jacobs has held steadfast to the idea of improving lives through the transforming power of chemistry during her career. Now, after seeing all she set out accomplish during her time as the American Chemical Society’s director and chief executive officer come to fruition, Jacobs is ready to move on to something new.

Jacobs started her career with the American Chemical Society (ACS) as a reporter for Chemical & Engineering News in 1969. Here, she rose in the ranks – becoming the magazine’s editor-in-chief in 1995.

Her work at Chemical & Engineering News prepared her for the role that she would take on in 2003 as ACS’s executive director.

(more…)

‘Smart Skin’ Replicates Sense of Touch

A team has developed a skin that can stretch over the entire prosthesis; and its applications aren't just limited to pressure. It's embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.Credit: Kim et al./Nature Communications

The skin is embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.
Credit: Kim et al./Nature Communications

We’ve talked about the advancements in prosthetic limbs in the past, but now a group of researchers out of Seoul National University are taking innovation in prosthetics one step further with this new “smart skin.”

Researchers from the Republic of Korea have developed a stretchy synthetic skin embedded with sensors, which will be able to help those with prosthetics regain their sense of touch.

This from “Stretchable silicon nanoribbon electronics for skin prosthesis” in the journal Nature Communications:

This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

(more…)

Graphene Applied to Body Armor

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.Credit: Jae-Hwang Lee

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.
Credit: Jae-Hwang Lee

We’ve been talking a lot about graphene – from its potential in energy storage to its ability to improve and revolutionize personal electronic devices, this material seems to be everywhere. Now, engineers out of the University of Massachusetts believe it could help save lives.

Engineers developed a mock-up of multilayered graphene body armor and tested it in a miniature shooting range. The results suggest that graphene may be able to absorb 10 times the amount of energy that its steel competitor can before failing.

(more…)

Why We Need More Women in Science

There is no doubt that women have made their mark in science. From Marie Curie to Rosalind Franklin – women have made outstanding contributions to innovation, research, and technology. Still, there is a significant gender bias that exists in the field, which affects research outcomes and discovery.

The questions exists: Why are there still so few women in science? How will this affect what we learn from research?

According to an article in National Geographic, women make up half the national workforce and earn more college and graduate degrees than men. Still, the gender gap in science exists – specifically in fields such as engineering.

This from National Geographic:

According to U.S. Census Bureau statistics, women in fields commonly referred to as STEM (science, technology, engineering, mathematics) made up 7 percent of that workforce in 1970, a figure that had jumped to 23 percent by 1990. But the rise essentially stopped there. Two decades later, in 2011, women made up 26 percent of the science workforce.

(more…)

Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!

The dolphin 'breathalyzer' will analyze the for health problems and aid in wildlife conservation.Credit: American Chemical Society

The dolphin ‘breathalyzer’ will analyze the for health problems and aid in wildlife conservation.
Credit: American Chemical Society

While breath analysis is most commonly known for its ability to detect alcohol consumption, it has the potential to extend far beyond that use. Breath analysis has the ability to diagnose a wide range of human conditions, and is now being utilized to aid the bottlenose dolphin.

Engineers from the University of California, Davis have developed a device for collecting dolphin breath for analysis. Because invasive techniques such as skin biopsies and blood sampling are difficult to perform on wild dolphins, this device will make it easier to check the health of the marine animals, study their biology, and aid in wildlife conservation.

This from UC Davis:

The researchers designed an insulated tube that traps breath exhaled from a dolphin’s blowhole and freezes it. They analyzed samples to create profiles of the mix of metabolites in breath, established baseline profiles of healthy animals and were able to identify changes in the breath of animals affected by disease or other factors. The researchers concluded that breath analysis could be used to diagnose and monitor problems in marine mammals – and, by extension, in ocean health as well.

(more…)

  • Page 5 of 6