New Approach to Molecular Catalysts

Using a desktop computer, scientists can query the model about the thermodynamic properties needed to create the desired catalysts. They can use those parameters to inform experimentalists in their synthetic work.Image: Accounts of Chemical Research

Using a desktop computer, scientists can query the model about the thermodynamic properties needed to create the desired catalysts. They can use those parameters to inform experimentalists in their synthetic work.
Image: Accounts of Chemical Research

We’re one step closer to transitioning renewable energy sources from intermittent to sustainable with this new development from Pacific Northwest National Laboratory.

Scientists are eliminating all of the unnecessary detours when dealing with molecular catalysts by elaborating on a strategy to map the catalytic route. With this strategy, researchers can modify just one part of a catalyst and see how that affects everything – including all the side reactions.

“We now know how catalysts with desired properties will behave in a given circumstance before we ever leave the computer. By working backwards, we can even ask which catalysts are the best performers for a set of conditions. We are on the verge of designing molecular electrocatalysts in silico — or conducting research by means of computer modeling,” said study co-leader, Dr. Simone Raugei.

(more…)

Controlling Car Pollution at the Quantum Level

Toyota Central R&D Labs in Japan have reviewed research that might be leading the way towards a new generation of automotive catalytic converters.Image: Bertel Schmitt/CC

Toyota Central R&D Labs in Japan have reviewed research that might be leading the way towards a new generation of automotive catalytic converters.
Image: Bertel Schmitt/CC

Soon we may be able to better control pollution created by cars at the quantum level.

Researchers from the Toyota Central R&D Labs are conducting research that may lead toward a new generation of automotive catalytic converters.

The new catalytic converters differ from the typical toxic fuel filtering systems due to the new catalyst’s focus on metal clusters, which allows it to be controlled at the quantum-level.

“We can expect an extreme reduction of precious metal using in automotive exhaust catalysts and/or fuel cells,” says Dr. Yoshihide Wantanabe, chief researcher at the Toyota Central R&D Labs in Japan.

(more…)

The Image at the Center of the Climate Debate

hockeystickFor the past several years, there has been one image that has been central to the climate change debate: the infamous “hockey stick” graph.

Since the graph appeared in the paper “Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitation,” Michael Mann has been hard at work defending his research.

“The hockey stick graph became a central icon in the climate wars,” Mann said at the Feb. 11 meeting of the American Association for the Advancement of Science. “The graph took on a life of its own.”

The graph gained notoriety when the Intergovernmental Panel on Climate Change published the image and starting using it to drive home the message of climate change. The graph still remains an ever-present part of the climate debates.

(more…)

The Solar Breakthrough

wood_mackenzieCountries around the world have been embracing solar energy with open arms – just take a look at Germany or Switzerland. In the United States, however, solar energy has made its way into the mainstream, but has not gone as far as many environmentalists would like. With the advances in drilling technology in the U.S., one is left to wonder what the next big breakthrough in the nation’s energy supply will be.

The Wood Mackenzie consultant agency out of Scotland believes the next big thing in energy in the U.S. will be solar, and they’ve got some pretty solid reasons.

(more…)

Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.

(more…)

Chemical Sponge to Lessen Carbon Footprint

A new chemical sponge out of the University of Nottingham has the potential to lessen the carbon footprint of the oil industry.

Professor Martin Schröder and Dr. Sihai Yang of the University of Nottingham led a multi-disciplinary team from various institutions, which resulted in the discovery of this novel chemical sponge that separates a number of important gases from mixtures generated during crude oil refinement.

Crude oil has many uses – from fueling cars and heating homes to creating polymers and other useful materials. However, the existing process for producing this fuel has not been as efficient as it could possibly be.

(more…)

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Topics of interest include but are not limited to:

  • Printable functional materials: metals; organic conductors; organic and inorganic semiconductors; and more
  • Functional printed devices: RFID tags and antenna; thin film transistors; solar cells; and more
  • Advances in printing and conversion processes: ink chemistry; ink rheology; printing and drying process; and more
  • Advances in conventional and emerging printing techniques: inkjet printing; aerosol printing; flexographic printing; and more

Find out more!

Deadline for submission of manuscripts is November 30, 2014.

Please submit manuscripts here.

The new solar battery stores power by "breathing" air to decompose and re-form lithium peroxide.Credit: Yiying Wu/Ohio State University

The new solar battery stores power by “breathing” air to decompose and re-form lithium peroxide.
Credit: Yiying Wu/Ohio State University

Is it a solar cell? Is it a rechargeable battery? Well, technically it’s both.

The scientists at Ohio State University have developed the world’s first solar battery that can recharge itself using light and air. The findings from the patent-pending device were published in the October 3, 2014 issue of the journal Nature Communications.

This from Ohio State University:

Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Read the full article here.

The university plans to license the solar battery to industry.

“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” said Yiying Wu, professor of chemistry and biochemistry at Ohio State University. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”

The device also tackles the issue of solar energy efficiency by eliminating the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery. Where typically only 80 percent of electrons make it from the solar cell into the battery, the new solar battery saves nearly 100 percent of electrons.

Want to know more about what’s going on with solar batteries? Check out the latest research in ECS’s Digital Library and find out what our scientists think the future looks like.

Adequate Sanitation Is a Basic Human Right

The lack of adequate sanitation facilities accounts for 4,100 preventable deaths every day.Credit: Kofi Opoku, West Virginia University

The lack of adequate sanitation facilities accounts for 4,100 preventable deaths every day.
Credit: Kofi Opoku, West Virginia University

With our Energy and Water Summit right around the corner, we’ve only got one thing on our mind: poop.

Forty percent of the world’s population – 2.5 billion people – practice open defecation or lack adequate sanitation facilities, and the consequences can be devastating for human health as well as the environment.

The Electrochemical Society and the Bill & Melinda Gates Foundation know there is no easy solution to this problem, but we are dedicated to finding and funding innovative research to reinvent the sanitation infrastructure.

In Francis de los Reyes’ TEDTalk entitled, “Sanitation is a basic human right,” the environmental engineer and sanitation activist makes his case for the total reinvention of the sanitation landscape as we know it.

“For the past 14-years, I’ve been teaching crap,” Reyes says.

And that he has. Reyes has dedicated his time to studying and researching human waste. The problem is especially relevant in India, where open deification is putting citizens at major health risks.


This from Reuters:

Less than a third of India’s 1.2 billion people have access to sanitation and more than 186,000 children under five die every year from diarrheal diseases caused by unsafe water and poor sanitation, according to the charity WaterAid.

The United Nations said in May half of India’s people defecate outside – putting people at risk of cholera, diarrhea, dysentery, hepatitis A and typhoid.

Read the full article here.

With India accounting for 818 million of the 2.5 billion people who lack adequate sanitation, most of the country’s rivers and lakes are polluted with sewage and industrial effluents.

So why can’t we just build western style flush-toilets in countries such as India?

“It’s just not possible,” Reyes says.

In these developing worlds, there is often time not enough water or energy to take on such a feat. Also, laying out sewer lines would cost governments tens of trillions of dollars.

Through our partnership with the Bill & Melinda Gates Foundation, we hope to help solve these issues.

The battle to produce the most efficient and environmentally friendly car rages on, and now a new company is rising in the ranks by proposing we power our cars with salt water.

The Quant e-Sportlimousine made its debut at the 2014 Geneva Motor Show and showcased its innovative NanoFlowcell technology. This new technology sets itself apart from other systems in its ability to store and release electrical energy at very high densities – all with the help of salt water.

This from Intelligent Living:

The flow cell system powering the Quant e-Sportlimousine’s four electric motors develops electricity from the electrochemical reaction created by two electrolyte solutions. This electricity is forwarded to super capacitors where it’s stored and distributed.

(more…)

  • Page 3 of 4