Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!

Major Breakthrough on Fusion Energy Project

The magnetic coils inside the compact fusion (CF) experiment are critical to plasma containment, as pictured in this undated handout photo

The magnetic coils inside the compact fusion experiment pictured in an undated photo provided by Lockheed Martin.
Credit: Reuters/Lockheed Martin

A few days ago we talked about fusion reactors and the new development out of the University of Washington that hopes to makes fusion a reality. Now we’re talking fusion again – only on a much different scale.

Lockheed Martin is making headlines for their announcement that their compact fusion reactors could be functional within one decade.

The company has been working for some time to develop a source of infinite energy, and have been devoting much time to fusion due to its clean and safe properties.

Their work on compact fusion revolves around the idea of using a high fraction of the magnetic field pressure, or all of its potential, to make devices much smaller than previous concepts. If they can achieve this, a reactor small enough to fit on a truck could provide enough power for a small city of up to 100,000 people.

(more…)

UW Reactor Could Make Fusion a Reality

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.Credit: University of Washington

The reactor uses a tokamak design, which is a giant torus surrounded on the sides and in the core by superconducting magnets generating tremendous energy.
Credit: University of Washington

Fusion energy appears to be the future of energy storage – or at least it should be. Fusion energy yields zero greenhouse gas emissions, no long-lived radioactive waste, and a nearly unlimited fuel supply.

Up until this point, there has been an economic roadblock in producing this type of energy. The designs that have been penciled out to create fusion power are too expensive and won’t feasibly outperform systems that use fossil fuels.

Now, the engineers at the University of Washington (UW) are hoping to change that. They have designed a concept for a fusion reactor, that when scaled up, would rival costs of fossil fuel plants with similar electrical outputs.

This from the University of Washington:

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn. The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

Read the full article here.

Currently, the University of Washington’s concept is about one-tenth the size and power output of a final product, which would still be years away.

Does the future of energy interest you? Check out what our Energy Technology Division has to offer. And head over to our Digital Library to see what our scientists are researching in the field of energy storage and conversion.

  • Page 2 of 2
    • 1
    • 2