Carbyne

Image: Lei Shi/Faculty of Physics, University of Vienna

The material Carbyne hit the benchtop years ago. Scientists were able to calculate the properties of this exotic material, but not able to stabilize it. Carbyne promised to be stronger and stiffer than any other material known to man, but the question of how to synthesize it remained.

Now, researchers from the University of Vienna in Austria were able to do just that. The researchers took the highly reactive, one-dimensional chain of carbon atoms and synthesized it by wrapping it in a double-walled tube of graphene that provided a protective casing, allowing the material to remain intact.

This from Gizmodo:

The record for stringing together carbon atoms like this in the past had been 100 in a row; now, the team can put 6,400 atoms together, and have them remain in a chain for as long as they want. That is, of course, as long as they sit inside the carbon Thermos. It remains to be seen how useful Carbyne will be whilst wrapped up, but for now it’s the best that researchers can achieve.

Read the full article.

While not much is known about Carbyne, the material is believed to be stronger than both graphene and diamonds, and twice the stiffness of any known material. Maybe (just maybe) this could bring us one step closer to space elevators.

Graphene’s potential seems limitless. From to patches that monitor glucose and inject treatment to water-splitting capabilities, the popularly proclaimed “wonder material” is finding a home in a host of applications. However, graphene has yet to make it wide-spread, commercial applications.

To help take graphene from the lab to society, the Graphene Flagship has been formed as a European initiative promoting collaborative research on the up-and-coming material. Recently, the initiative published a paper detailing the possibility of creating light-responsive graphene-based devices that could be applied to anything from photo-sensors to optically controllable memories.

(MORE: Listen to our podcast with nanocarbons expert Bruce Weiseman, where we talk graphene, fullerenes, and all things nano.)

This from Graphene Flagship:

The work shows how, by combining molecules capable of changing their conformation as a result of light irradiation with graphite powder, one can produce concentrated graphene inks by liquid phase exfoliation. These graphene inks can then be used to make devices which, when exposed to UV and visible light, are capable of photo-switching current in a reversible fashion.

(more…)

Bruce Weisman, chemistry and materials science professor at Rice University, is internationally recognized for his contributions to the spectroscopy and photophysics of carbon nanostructures. He is a pioneer in the field of spectroscopy, leading the discovery and interpretation of near-infrared fluorescence for semiconducting carbon nanotubes. Aside from his work at Rice University, Weisman is also the founder and president of Applied NanoFluorescence.

Weisman is currently the Division Chair of the ECS Nanocarbons Division, which will be celebrating 25 years of nanocarbons symposia at the upcoming 229th ECS Meeting in San Diego, CA, May 2016. Since starting in 1991, the symposia has totaled 5,853 abstracts at ECS biannual meetings, with Nobel Laureate Richard Smalley delivering the inaugural talk.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Glucose monitoring has had a long history with electrochemical science and technology. While ECS Honorary Member Adam Heller’s continuous glucose monitoring system for diabetes management may be the first innovation that comes to mind, there is a new electrochemical bio-sensing tool on the horizon.

(WATCH: ECS Masters – Adam Heller)

Researchers have combined graphene with a tiny amount of gold to enhance the wonder material’s properties and develop a flexible skin patch to monitor blood glucose and automatically administer drugs as needed.

This from Extreme Tech:

[As] cool as a non-invasive blood-glucose monitor is, it’s nearly as revolutionary as what comes next: treatment. The patch is studded with “microneedles” that automatically cap themselves with a plug of tridecanoic acid. When high blood-glucose levels are detected, the patch heats a small heater on the needles which deforms the plug and allows the release of metformin, a common drug for treatment of type 2 diabetes. Cooling naturally restores the plug and stops drug release.

Read the full article.

This development is a huge stepping stone in the transformation of graphene as a laboratory curiosity to a real product. While it has taken a while due to the questions of the new material’s intrinsic properties, researchers believe that graphene-based products could soon be hitting the market.

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene's properties.Image: Brown University

Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene’s properties.
Image: Brown University

By now we’ve heard about the seemingly endless possibilities for the wonder material graphene. The engineers at Brown University are looking to make those possibilities even more appealing through a process that could make the nanomaterial both water repellant and enhance its electrochemical properties.

The research team is looking to improve upon the already impressive graphene by wrinkling and crumpling sheets of the material by placing it on shrink polymers to enhance its properties, potentially leading to new breakthroughs in batteries and fuel cells.

This from Brown University:

This new research builds on previous work done by Robert Hurt and Ian Wong, from Brown’s School of Engineering. The team had previously showed that by introducing wrinkles into graphene, they could make substrates for culturing cells that were more similar to the complex environments in which cells grow in the body. For this latest work, the researchers led by Po-Yen Chen, a Hibbit postdoctoral fellow, wanted to build more complex architectures incorporating both wrinkles and crumples.

Read the full article.

Crumpling the graphene makes it superhydrophobic, a property that could be used to develop self-cleaning surfaces. Additionally, the enhanced electrochemical properties could be used in next-generation energy storage and production.

“You don’t need a new material to do it,” said Po-Yen Chen, co-author of the study. “You just need to crumple the graphene.”

Graphene is at it again, outperforming all known materials (including superconductors) in a recent study testing the transmission of high frequency electrical signals.

The researchers found that when the electrical signals pass through graphene, none of the energy is lost – opening the door to a new realm of electrical transmission.

This from the University of Plymouth:

And since graphene lacks band-gap, which allows electrical signals to be switched on and off using silicon in digital electronics, academics say it seems most applicable for applications ranging from next generation high-speed transistors and amplifiers for mobile phones and satellite communications to ultra-sensitive biological sensors.

Read the full article.

“An accurate understanding of the electromagnetic properties of graphene over a broad range of frequencies (from direct current to over 10 GHz) has been an important quest for several groups around the world,” said Shakil Awan, leader of the study. “Initial measurements gave conflicting results with theory because graphene’s intrinsic properties are often masked by much larger interfering signals from the supporting substrate, metallic contacts and measurement probes. Our results for the first time not only confirm the theoretical properties of graphene but also open up many new applications of the material in high-speed electronics and bio-sensing.”

(more…)

Graphene Simplifies Ice Removal

Graphene ice removal

Through a nanoribbon-infused epoxy, researchers were able to remove ice through Joule heating.
Image: Rice University

Graphene, better known as the wonder material, has seemingly limitless possibilities. From fuel cells to night-vision to hearing, there aren’t many areas that graphene hasn’t touched. Now, researchers from Rice University and transforming graphene for uses in air travel safety.

James Tour, past ECS lecturer and molecular electronics pioneer, has led a team in developing a thin coating of graphene nanoribbons to act as a real-time de-icer for aircrafts, wind turbines, and other surfaces exposed to winter weather.

(MORE: Read “High-Density Storage, 100 Times Less Energy“)

Through electrothermal heat, the graphene nanoribbons melted centimeter-thick ice on a static helicopter rotor blade in a -4° Fahrenheit environment.

This from Rice University:

The nanoribbons produced commercially by unzipping nanotubes, a process also invented at Rice, are highly conductive. Rather than trying to produce large sheets of expensive graphene, the lab determined years ago that nanoribbons in composites would interconnect and conduct electricity across the material with much lower loadings than traditionally needed.

Read the full article.

“Applying this composite to wings could save time and money at airports where the glycol-based chemicals now used to de-ice aircraft are also an environmental concern,” Tour said.

The coating may also protect aircrafts from lightning strikes and provide and extra layer of electromagnetic shielding.

Potential of the Graphene Microphone

From solar cells to fuel cells to body armor, graphene has more potential applications than one could briefly summarize. Now, this wonder material is entering into a new realm of possibility.

According to new research from the University of Belgrade in Serbia, graphene has amazing sound detection qualities. Because of this, the researchers have developed the world’s first graphene-based condenser microphone. At about 32 times the strength of some of today’s best microphones, the graphene-based device has the ability to detect a range of audible frequencies. Further, the researchers believe that with a little more tweaking, it will be able to pick up sound that is well beyond the range of human hearing.

This from Gizmodo:

The researchers used a chemical vapor deposition process to “grow” sheets of graphene on a nickel foil substrate. They then etched the nickel away and placed the remaining graphene sheet (about 60 layers thick) in a commercial microphone casing. There, it acts as a vibrating membrane, converting sound to electric current.

(more…)

Graphene for Next-Gen Night Vision

Graphene is called the “wonder material” with good reason. The material hosts a slew of unique chemical and physical properties, with applications from fuel cells to biomedical to energy storage.

Now, a team from MIT is taking the material and applying it to infrared sensors to create next-gen night vision goggles. Additionally, the team is looking to take that same technology and apply it to high-tech windshields and smartphones.

We achieve night vision capabilities through thermal imaging that allows people to see otherwise invisible infrared rays that are shed as heat. This technology is useful for many different applications, such as assisting soldiers and firefighters in their duty. While night vision devices currently exist, they need bulky cooling systems to create a useful image.

Because of graphene’s electrical qualities, researchers have known that the material would be an excellent infrared detector. The team at MIT took this idea and moved forwarding in creating a less bulky night vision goggle through the utilization of graphene.

(more…)

Introducing Graphene’s Cousin: Stanene

Stanene-LatticeResearchers made a prediction two years ago that a one-atom thick, tin super material would soon be developed. They believed that this mesh material would yield amazing advances for materials science and be able to conduct electricity with 100 percent efficiency. Now, those same researchers are making good on their prediction with the announcement of the newly developed film called stanene.

Theoretically, potential uses of this material could range from circuit structures to transistors.

Cousin to graphene, this lattice of carbon atoms has similar qualities to a host of other materials, but scientists predict stanene to have a special kick that no other material has yet.

(more…)