Transforming Graphene from 2D to 3D

The researchers are also investigating the textured graphene surfaces for 3D sensor applications.Image: Nano Letters

The researchers are also investigating the textured graphene surfaces for 3D sensor applications.
Image: Nano Letters

The infamous wonder material is becoming even more wonderful with this new development from the University of Illinois at Urbana-Champaign (UIUC).

Scientist from UIUC have developed a novel process to transform flat graphene from 2D to 3D with a simple and commercially available single-step process. The process uses thermally activated shape-memory polymer substrates to texture the graphene and “crumple” it to give it an increased surface space.

With the easy of this process and the increased surface space of the material, there is a potential for electronics and biomaterials to advance at a much faster rate.

(more…)

What Is Penta-Graphene?

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.Image: VCU

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.
Image: VCU

Researchers from Virginia Commonwealth University (VCU) in conjunction with universities in China and Japan have discovered a new structural variant of carbon that they are coining “penta-graphene.”

The new material is comprised of a very thin sheet of pure carbon that is especially unique due to its exclusively pentagonal pattern. Thus far, the penta-graphene appears to be dynamically, thermally and mechanically stable.

“The three last important forms of carbon that have been discovered were fullerene, the nanotube and graphene. Each one of them has unique structure. Penta-graphene will belong in that category,” said the paper’s senior author and distinguished professor in the Department of Physics at VCU, Puru Jena in a press release.

The inspiration for this new development came from the pattern of the tiles found paving the streets of Cairo. Professor at Peking University and adjunct professor at VCU, Qian Wang, got the inspiration that inevitably led to penta-graphene while dining in Beijing.

(more…)

Silicene Moves Us toward Super-Fast Computers

Researchers have created the first transistor out of silicene, the world's thinnest silicon material.Image: University of Texas at Austin

Researchers have created the first transistor out of silicene, the world’s thinnest silicon material.
Image: University of Texas at Austin

There’s an exciting new development in the world of single-atom thick materials, and surprisingly it doesn’t revolve around graphene.

Instead, scientist have shifted their attention to silicene: an exotic form of silicon that has fantastic electrical properties for computer chips.

Like graphene, silicene is a single-atom thick material that allows electrons to flow through it at amazingly high speeds. However, silicene does not occur naturally like graphene – it instead has to be grown in the lab on a sheet of silver.

Because of the difficulty encountered when attempting to produce silicene, its properties have only been theoretical until now. Recently, Deji Akinwande of the University of Texas at Austin turned his attention to this material and found a way to make a transistor out of silicene.

(more…)

Deep-Fried Graphene for Energy Storage

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.Credit: Chem. Mater.

The 5-µm-diameter graphene balls in these scanning electron microscope images contain graphene nanosheets radiating outward from the center.
Credit: Chem. Mater.

Materials scientists have developed a new technique that could provide a simpler and more effective way to produce electrode materials for batteries and supercapacitors, which could potentially lead to devices with improved energy and power densities.

The researchers have unlocked this new battery technology by exposing tiny bits of graphene to a process that is very similar to deep-frying.

Prior to this development, scientists had difficulty using graphene in electrodes due to the difficulty encountered when processing the material. However, the researchers out of Yonsei University have learned how to harness the material’s electrical and mechanical properties while retaining its high surface are by using an alternative technique.

(more…)

Magnetic Graphene

New research could lead to new multi-functional electronic devices.

New research could lead to new multi-functional electronic devices.

Graphene is regarded by many as a wonder material and hosts a multitude of amazing properties, but magnetism has never been one of them. The only way to make the material magnetic is by doping it with magnetic imputrites, but that tends to negatively impact its electronic properties. Now, a team of physicists at the University of California, Riverside decided to address this issue by finding a way to induce magnetism in graphene while also preserving its magnetic properties.

To do this, the team brought a graphene sheet very close to a magnetic insulator – an electrical insulator with magnetic properties.

“This is the first time the graphene has been made magnetic this way,” said Jing Shi, a professor of physics and astronomy, whose lab led the research. “The magnetic graphene acquires new electronic properties so that new quantum phenomena can arise. These properties can lead to new electronic devices that are more robust and multi-functional.”

(more…)

Flexible, Three-Dimensional Supercapacitors

The flexible material created at Rice University has the potential for use in electronics or for energy storage.Image: Tour Group/Rice University

The flexible material created at Rice University has the potential for use in electronics or for energy storage.
Image: Tour Group/Rice University

James Tour and his group at Rice University have developed and tested a flexible, three-dimensional supercapacitor with the potential to be scaled up for commercial applications.

In this study, the researchers advanced what they had already developed in laser-induced graphene (LIG) by producing and testing the stacked, three-dimensional supercapacitors.

Their prior findings showed that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene, which has the potential to be the perfect electrode for supercapacitors or electronic circuits.

The researchers began by making vertically aligned supercapacitors with laser-induced graphene on both sides of a polymer sheet.

(more…)

Member Spotlight – Jiaxing Huang

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.Image: Northwestern University

ECS member Jiaxing Huang used freshman-level chemistry to solve the solubility mystery of graphene oxide films.
Image: Northwestern University

Sometimes science can be extremely complex and commanded by technical expertise. But there are moments when one has to go back to his roots to find a more simple answer for a complex issue. That is what ECS member Jiaxing Huang – along with a team of Northwestern University researchers – has done in order to solve the mystery that surrounds the solubility of graphene oxide films.

For years, one question has puzzled the materials science community – why are graphene oxide (GO) films highly stable in water?

When submerged, GO sheets become negatively charged and repel, which should cause membrane to disintegrate. Though much to the confusion of the scientific community, when GO sheets are submerged they stabilize.

(more…)

graphene_manchester

The heterostructures is based on 2D atomic crystals for photovoltaic applications.
Image: University of Manchester

Researchers from the University of Manchester in conjunction with the National University of Singapore have discovered an exciting new development with the wonder material graphene.

The researchers have been able to combine graphene with other one-atom thick materials to create the next generation of solar cells and optoelectronic devices.

With this, they have been able to demonstrate how multi-layered heterostructures in a three-dimensional stack can produce an exciting physical phenomenon exploring new electronic devices.

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Turning Hydrogen Into “Graphene”

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.Credit: Carnegie Science

A comparison of the basic ring structure of the carbon compound graphene with that of a similar hydrogen-based structure synthesized by Carnegie scientists.
Credit: Carnegie Science

A new study shows remarkable parallels between hydrogen and graphene under extreme pressures.

The study was conducted by Carnegie’s Ivan Naumov and Russell Hemley, and can be found in the December issue of Accounts of Chemical Research.

Because of hydrogen’s simplicity and abundance, it has long been used as a testing ground for theories of the chemical bond. It is necessary to understand chemical bonding in extreme environments in order to expand our knowledge of a broad range of conditions found in the universe.

It has always been difficult for researchers to observe hydrogen’s behavior under very high pressure, until recently when teams observed the element at pressures of 2-to-3.5 million times the normal atmospheric pressure.

Under this pressure, it transforms into an unexpected structure that consists of layered sheets, rather than close-packed metal – which had been the prediction of scientists many years ago.

(more…)

  • Page 5 of 6