Helping Medicine with Graphene Quantum Dots

Researchers from the University of Sydney have recently published their findings that quantum dots made of graphene can improve bio-imaging and LEDs.

The study was published in the journal Nanoscale, where the scientists detailed how activating graphene quantum dots produced a dot that would shine nearly five times bright than the conventional equivalent.

Essentially, the dots are nano-sized semiconductors, which are fluorescent due to their surface properties. However, this study introduces the utilization of graphene in the quantum dot, which produces an extra-bright dot that has the potential to help medicine.

(more…)

Graphene Applied to Body Armor

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.Credit: Jae-Hwang Lee

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.
Credit: Jae-Hwang Lee

We’ve been talking a lot about graphene – from its potential in energy storage to its ability to improve and revolutionize personal electronic devices, this material seems to be everywhere. Now, engineers out of the University of Massachusetts believe it could help save lives.

Engineers developed a mock-up of multilayered graphene body armor and tested it in a miniature shooting range. The results suggest that graphene may be able to absorb 10 times the amount of energy that its steel competitor can before failing.

(more…)

See-through sensors, which have been developed by a team of UW-Madison engineers, should help neural researchers better view brain activity.Credit: Justin Williams' Research Group

See-through sensors, which have been developed by a team of UW-Madison engineers, should help neural researchers better view brain activity.
Credit: Justin Williams’ Research Group

A team of engineers at the University of Wisconsin-Madison have developed invisible implantable medical sensor array, which will help neural researchers better view and understand brain activity.

This from the University of Wisconsin-Madison:

Neural researchers study, monitor or stimulate the brain using imaging techniques in conjunction with implantable sensors that allow them to continuously capture and associate fleeting brain signals with the brain activity they can see. However, it’s difficult to see brain activity when there are sensors blocking the view.

Read the full article here.

The development of the see-through sensor will help overcome this major technological hurdle.

“One of the holy grails of neural implant technology is that we’d really like to have an implant device that doesn’t interfere with any of the traditional imagining diagnostics,” says Justin Williams, a professor of biomedical engineering and neurological surgery at UW-Madison. “A traditional implant looks like a square of dots, and you can’t see anything under it. We wanted to make a transparent electronic device.”

The research is published in the October 20 issue of the online journal Nature Communications.

The team developed the sensor using graphene due to its versatility and biocompatibility, thus making the device incredibly flexible and transparent because the electronic circuit elements are only four atoms thick.

Sensor science and technology is growing rapidly in response to an ever-increasing demand for faster, cheaper, smaller, and more sensitive means to monitor the chemical, biological, and physical world around us. Make sure you stay up-to-date with the latest research in this exciting field through our Digital Library.

The Future of Energy Storage

The modified graphene aerogels are promising for high-power electrical energy storage applications due to their high surface area and excellent conductivity.Credit: Ryan Chen

The modified graphene aerogels are promising for high-power electrical energy storage applications due to their high surface area and excellent conductivity.
Credit: Ryan Chen

We all know the buzz around graphene, but now researchers from Lawrence Livermore National Laboratory have found a way to improve upon this ultra-light material to boost the efficiency of your personal electronics.

The team at Lawrence Livermore have turned to graphene aerogel for enhanced electrical energy storage. This new generation of graphene has the potential to smooth power fluctuations in the energy grid, among other things.

(more…)

First Graphene-Based Flexible Display Produced

"This is a significant step forward to enable fully wearable and flexible devices ." -Andrea Ferrari, Director of the Cambridge Graphene Centre

“This is a significant step forward to enable fully wearable and flexible devices .”
-Andrea Ferrari, Director of the Cambridge Graphene Centre

There has been quite the buzz around graphene lately. With this material being among the strongest and most lightweight known, it has the potential to revolutionize industries from healthcare to electronics. And revolutionize is exactly what the Cambridge Graphene Centre (CGC) and Plastic Logic have set out to do.

With the CGC’s graphene expertise and Plastic Logic’s already developed technology for flexible electronics, the two came together to demonstrate the first graphene-based flexible display.

This from University of Cambridge:

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

(more…)

What’s Graphene?

Kostya Novoselov

Published over 60 peer-refereed research papers (mainly as the principal/corresponding author) including Nature and Science articles and more than 15 papers in Nature Materials, Nature Physics, Nature Nanotechnology, Reviews of Modern Physics, Physical Review Letters, PNAS.

We’ve been having lots of talks around the home office about how people don’t realize the impact of electrochemistry and solid state science have on their world.

Being new here, I’m still playing catch up with the science. I ask a lot of questions. My colleagues patiently try to do what Miss Lemke could never accomplish in 11th grade chemistry.

Here’s one result that can benefit me and the rest of our less aware readers of this blog. I got this video link explaining graphene from John Lewis, our Associate Director of Publications. The video is from The One Show, BBC1 last year.

(more…)

Using Hemp to Store Energy

“People ask me: why hemp? I say, why not?”

That is what Dr. David Mitlin said about the new discovery in bio-waste that has been published in the journal ACS Nano, according to BBC.

Mitlin and his team presented their findings at the American Chemical Society meeting in San Francisco, where it was explained how waste fibres from hemp can be transformed into high performance energy storage devices.

The hemp – which is legal to grow due to the absence of THC – is producing supercapacitors that are at least on par with the graphene, which is known to be the industry’s gold standard.

Dr. Mitlin and his researchers primary focusing on taking produces that are considered waste and evolving them into something applicable and with high value.

This from BBC:

But the leftover bast fibre – the inner bark – typically ends up as landfill. Dr Mitlin’s team took these fibres and recycled them into supercapacitors – energy storage devices which are transforming the way electronics are powered.

Read the full article here.

If you’re interested in Dr. Mitlin’s research, take a look at this article that he published with ECS.

  • Page 6 of 6