IdeaBig ideas are getting harder and harder to find, and innovations have become increasingly massive and costly endeavors, according to new research.

As a result, tremendous continual increases in research and development will be needed to sustain even today’s low rate of economic growth.

This means modern-day inventors—even those in the league of Steve Jobs—will have a tough time measuring up to the productivity of the Thomas Edisons of the past.

Nicholas Bloom, senior fellow at the Stanford Institute for Economic Policy Research and coauthor of a paper released this week by the National Bureau of Economic Research, contends that so many game-changing inventions have appeared since World War II that it’s become increasingly difficult to come up with the next big idea.

“The thought now of somebody inventing something as revolutionary as the locomotive on their own is inconceivable,” Bloom says.

“It’s certainly true if you go back one or two hundred years, like when Edison invented the light bulb,” he says. “It’s a massive piece of technology and one guy basically invented it. But while we think of Steve Jobs and the iPhone, it was a team of dozens of people who created the iPhone.”

(more…)

ECS Podcast – Jon Gertner, Author

Our second episode of ECS Podcast features Jon Gertner, author of The Idea Factory: Bell Labs and the Great Age of American Innovation. Listen as we explore one of the most innovative institutions of the 20th century and how it revolutionized computing and information technology.

This episode of the ECS Podcast is available below and is free to download! (Also available through the iTunes Store and RSS Feed.)

(more…)

UK Unveils Driverless Pods

If the three initial pods are successful, a fleet of 40 vehicles will be rolled out on the pavements of the UK.

If the three initial pods are successful, a fleet of 40 vehicles will be rolled out on the pavements of the UK.

The UK is setting itself up to be a world leader in driverless technology with the introduction of the LUTZ Pathfinder pod.

The vehicle is the UK’s first driverless car that is making its way past the testing phase and it poised to hit the roads later this year.

The electric-powered vehicle has 19 sensors and a light detection and ranging system, which measure distance by illuminating a target with a laser and analyzing the reflected light.

With a range of 40 miles, the vehicle can last eight hours of continuous travel on one charge. However, it maxes out at top speeds of 15 mph.

(more…)

Electrochemistry Fights World Cancer

SA10519_WCD_Logo_4cCancer is among the leading causes of mortality worldwide. According to the World Health Organization, approximately 14 million new cases and 8.2 million cancer related deaths were recorded in 2012. If no major breakthroughs are made in the field, that number is expected to rise by 70 percent over the next two decades. In honor of World Cancer Day, we’re taking a look at a few ways electrochemical and solid state science aids in the fight against cancer.

Electrochemical Biosensing for Cancer Detection
By taking biopsy slices for colon cancer, researchers were able to use electrochemical biosensors to distinguish between cancerous and normal epithelial tissues. This development helped promote rapid cancer detection by eliminating pretreatment and providing results obtained within minutes of biopsy removal. Read the full paper here.

Polymer Based Sensors to Diagnose Breast Cancer
There are many issues that mammography faces, including the uncomfortableness of the screening and exposure to radiation. In order to solve this issues, electrochemical scientists developed an Electrical Impedance Tomography (EIT) system. This radiation-less technique aims to enhance early detection capabilities by generating a 3-D map of the breast. Read the full paper here.

(more…)

Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.

(more…)

The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.Image: Eric Whitmire

The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.
Image: Eric Whitmire

Science can be a strange and wondrous world of extraordinary innovation and unbelievable discovery. Now, one of our favorite scientific innovations has made its return: the cyborg cockroach.

As you may remember, ECS Board Member and Senior VP Dan Scherson once co-authored a paper that detailed how a cyborg cockroach can generate and transmit signals wirelessly. (You can check paper out here – it’s open access!)

Now cyborg cockroaches are making their way back into science with a new study that uses the roaches to pick up sounds with small microphones and seek out the source of that sound.

The purpose of this development is to help emergency personnel find and rescue survivors in the aftermath of an accident.

(more…)

This Day in Electrochemistry – Electric Lamp

On January 27, 1880, Thomas Edison received the historic patent embodying the principals of his incandescent lamp that paved the way for the universal domestic use of electric light.Image:Government Documents

On January 27, 1880, Thomas Edison received the historic patent embodying the principals of his incandescent lamp that paved the way for the universal domestic use of electric light.
Image: Government Documents

On this very day in the year 1880, Thomas Edison was granted a patent for the electric lamp, which gave light by incandescence.

While the first electric carbon arc lamp was invented by Sir Humphrey Davey of England in 1801, it wasn’t until Edison’s discovery in 1880 that we got the longer lasting electric lamp that changed the way we live.

Edison was one of the original members of The Electrochemical Society, joining the organization in 1903 – just one year after it was established. Early members such as Charles Burgess recall attending ECS meetings at Edison’s home in the early days of the Society.

On his years of research in developing the electric light blub, Edison was quoted in “Talks with Edison” by George Parsons Lathrop in Harpers magazine on February of 1890. He had this to say:

“During all those years of experimentation and research, I never once made a discovery. All my work was deductive, and the results I achieved were those of invention, pure and simple.”

Since the Thomas Edison’s days in the Society, ECS has been working to promote technological innovation and inspire scientists from around the world. Join some of the greatest scientific minds in electrochemical and solid state science and technology by becoming a member today!

Image: Antalexion

Image: Antalexion

With climate change being a continually rising global dilemma, many scientist have turned their attention to research in the area of renewable energy sources. Even with some of the most brilliant minds working on improving efficiency and price of solar cells, they are still not widely used due to the high cost of materials used to develop the them. Now, a scientist may be on the path to cracking the code on material prices of solar cells by using nanotechnology.

Elijah Thimsen, assistant professor at the School of Engineering & Applied Science at Washington University in St. Louis, worked in conjunction with a team of engineers at the University of Minnesota to develop a technique to increase the performance of electrical conductivity.

(more…)

Intel may be known for microprocessors and long-time ECS member Gordon E. Moore, but now the company’s Edison technology is lending itself to something entirely different.

They call it the Spider Dress, and the innovation involved in making this product goes far beyond sheer aesthetic value.

The 3-D printed dress was created by Anouk Wipprecht and uses Intel’s Edison technology to power robotic spider legs surrounding the collar, designed to keep people out of your personal space.

The dress’s robotic arms are connected to proximity sensors, which will react when someone gets too close to the wearer of the dress. Further, the sensors use biometric signals to measure the wearer’s stress level, which allow the dress to respond based on your mood.

(more…)

New Smartphone Battery Charges in Seconds

The 2015 Consumer Electronics Show (CES) is coming to a close, but not before showcasing a huge breakthrough in battery technology.

The Israeli start-up company StoreDot showed off their new product at CES: a smartphone battery that can charge in just seconds.

StoreDot’s battery charges 100 times faster than the present lithium-ion batteries and can last about five hours on a two minute charge.

However, the battery cannot be retrofitted to existing devices because most phones would be fried by the 40 amps of electricity. Instead, StoreDot’s battery is completely new – containing special synthesized organic molecules.

“We have reactions in the battery that are non-traditional reactions that allow us to charge very fast, moving ions from an anode to a cathode at a speed that was not possible before we had these materials,” Doron Myersdorf, the company’s chief executive, told BBC.

(more…)

  • Page 1 of 2
    • 1
    • 2