Researchers from Argonne National Laboratory and Oregon State University have developed new cathode architecture for lithium-sulfur batteries. The team, led by ECS member Khalil Amine, incorporated graphene and sulfide nanoparticles to improve electrical conductivity in the promising lithium-sulfur batteries.

Lithium-sulfur batteries hold major promise as researchers explore the range of energy storage technologies. With an extremely high theoretical energy density, these batteries have the potential to store up to five times as much energy as today’s best lithium-ion battery.

But there are barriers preventing that theoretical density from becoming an actual density. Namely, the discharge products of sulfur electrodes and cycling intermediates produced.

(more…)

Glass Coating for Li-S Battery

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.Image: Nanoscale

Researchers have investigated a strategy to prevent this “polysulfide shuttling” phenomenon by creating nano-sized sulfur particles, and coating them in silica (SiO2), otherwise known as glass.
Image: Nanoscale

Lithium-sulfur has been a hot topic in battery technology recently. Because of its ability to produce 10 times the amount of energy as a conventional battery, we’ve seen novel innovations such as the all solid state lithium-sulfur battery. Now, the li-sulfur battery is getting a glass coating to further improve its performance.

Researchers at the University of California, Riverside have applied a glass cage-like coating, along with graphene oxide, to the li-sulfur battery. This innovation was developed in order to overcome one of the major issues in commercializing the battery – polysulfides, which cause the battery’s capacity to decrease over its lifetime.

The cathode material traps the polysulfides in a very thin glass cage. Researchers used an organic precursor to construct the trapping barrier.

(more…)

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.Image: Journal of The Electrochemical Society

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.
Image: Journal of The Electrochemical Society

A team from Japan’s Samsung R&D has worked in collaboration with researchers from the University of Rome to fabricate a novel all solid state Lithium-sulfur battery.

The paper has been recently published in the Journal of The Electrochemical Society. (P.S. It’s Open Access! Read it here.)

The battery’s capacity is around 1,600 mAhg⁻¹, which denotes an initial charge-discharge Coulombic efficiency approaching 99 percent.

Additionally, the battery possesses such beneficial properties as the smooth stripping-deposition of lithium. In contrast to other Li-S cells, the new battery’s activation energy of the charge transfer process is much smaller.

(more…)

A New Generation of Electric Car Battery

Scientists out of the University of Waterloo are one step closer to inventing a cheaper, lighter and more powerful rechargeable battery for electric vehicles. At the heart of this discovery lies a breakthrough in lithium-sulfur batteries due to an ultra-thin nanomaterial.

This from the University of Waterloo:

Their discovery of a material that maintains a rechargeable sulfur cathode helps to overcome a primary hurdle to building a lithium-sulfur (Li-S) battery. Such a battery can theoretically power an electric car three times further than current lithium-ion batteries for the same weight – at much lower cost.

(more…)