Lithium-ion

The Samsung Galaxy Note 7 has recently been in the headlines for safety concerns pertaining to its lithium-ion battery. Now, a lawsuit filed in California claims that the issues extend beyond the Note 7, and that many other generations of Samsung smartphones “pose a risk of overheating, fire, and explosion.”

While Samsung claims that the Li-ion safety issues are isolated to only the Note 7, researchers in the field of energy storage are still looking for a way to develop an efficient, non-combustible battery. CBS recently stopped by the University of Maryland to discuss just that with ECS member Erich Wachsman.

Watch the full CBS interview.

In an effort to build safer batteries, Wachsman and his group at the University of Maryland are focusing their research efforts on lithium conducting ceramic discs, which can handle thousands of degrees without any issues.

“Because it’s ceramic, it’s actually not flammable,” says Wachsman, director of the university’s Energy Research Center. “You cannot burn ceramic.”

(MORE: Listen to Wachsman discuss his work in water and sanitation.)

Since the rise of Li-ion battery safety in the news, Wachsman’s research has received more attention from industry. He and his group are currently working on scaling up the technology.

ECS Podcast – The Battery Guys

This year marks the 25th anniversary of the commercialization of the lithium-ion battery. To celebrate, we sat down with some of the inventors and pioneers of Li-ion battery technology at the PRiME 2016 meeting.

Speakers John Goodenough (University of Texas at Austin), Stanley Whittingham (Binghamton University), Michael Thackeray (Argonne National Laboratory), Zempachi Ogumi (Kyoto University), and Martin Winter (Univeristy of Muenster) discuss how the Li-ion battery got its start and the impact it has had on society.

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

Electric VehiclesIn 2005, the number of electric vehicles on the road could be measured in the hundreds. Over the years, researchers have made technological leaps in the field of EVs. Now, we’ve exceeded a global threshold of one million EVs, and the demand continues to grow.

However, the ultimate success and growth of the EV hinges on battery technology. With some scientists stating that convention Li-ion batteries are approaching their theoretical energy density limits, researchers have begun exploring new energy storage technologies.

ECS member Qiang Zhang is one researcher focusing on technologies beyond Li-ion, specifically focusing on lithium sulfur batteries in a recently published paper.

“The lithium sulfur battery is recognized as a promising alternative for its intercalation chemistry counterparts,” Zhang says. “It possesses a theoretical energy density of ~2600 Wh kg-1 and provides a theoretical capacity of 1672 mAh g−1 through multi-electron redox reactions. Additionally, valuable characteristics like high natural abundance, low cost and environmental friendliness of sulfur have lent competitive edges to the lithium sulfur battery.”

(more…)

Lithium-ion battery safety has been a hot topic in the scientific community in light of instances of the Samsung Galaxy Note 7 bursting into flames. In order to address these concerns, scientists must first better understand exactly what is causing these safety concerns. In order to do that, a team from the University of Michigan is looking inside the batteries and filming growing dendrites – something the researchers cite as one of the major problems for next-gen lithium batteries.


The study focused primarily on lithium-metal batteries, which have the potential to store 10 times more energy that current lithium-ion batteries. However, researchers believe that issues with dendrites cannot be amended, the future of the Li-metal battery will not be as limitless as some believe.

“As researchers try to cram more and more energy in the same amount of space, morphology problems like dendrites become major challenges. While we don’t fully know why the Note 7s exploded, dendrites make bad things like that happen,” said Kevin Wood, postdoctoral researcher and ECS student member. “If we want high energy density batteries in the future and don’t want them to explode, we need to solve the dendrite problem.”

(more…)

From Bourbon to Batteries

There is no short supply of bourbon in Kentucky. But like many products, the distillation of the state’s unofficial beverage produces a sludgy waste known as bourbon stillage. The question for one researcher from the University of Kentucky’s Center for Applied Energy Research was how to repurpose that waste into something with tremendous potential.

To answer that question, ECS member Stephen Lipka and his Electrochemical Power Sources group set out to transform the bourbon stillage through a process called hydrothermal carbonization, where the liquid waste gets a dose of water and heat to produce green materials.

(MORE: See more of Lipka’s work in the ECS Digital Library.)

“In Kentucky, we have this stillage that contains a lot of sugars and carbohydrates so we tried it and it works beautifully,” says Lipka. “We take these [green materials] and we then do additional post-processing to convert it into useful materials that can be used for batteries.”

(more…)

A new report by TechXplore examines a recently published review paper on the potential in nanomaterials for rechargeable lithium batteries. In the paper, lead-author and ECS member Yi Cui of Stanford University, explores the barriers that still exist in lithium rechargeables and how nanomaterials may be able to lend themselves to the development of high-capacity batteries.

When trying to design affordable batteries with high-energy densities, researchers have encountered many issues, including electrode degradation and solid-electrolyte interphase. According to the paper’s authors, possible solutions for many of these hurdles lie in nanomaterials.

Cui’s comprehensive overview of rechargeable lithium batteries and the potential of nanaomaterials in these applications came from 100 highly-reputable publications, including the following ECS published papers:

(more…)

Modified Cathode

Cathode particles treated with the carbon dioxide-based mixture show oxygen vacancies on the surface.
Image: Laboratory for Energy Storage and Conversion, UC San Diego

An international team of researchers has recently demonstrated a 30 to 40 percent increase in the energy storage capabilities of cathode materials.

The team, led by ECS member and 2016 Charles W. Tobias Young Investigator Award winner, Shirley Meng, has successfully treated lithium-rich cathode particles with a carbon dioxide-based gas mixture. This process introduced oxygen vacancies on the surface of the material, allowing for a huge boost to the amount of energy stored per unit mass and proving that oxygen plays a significant role in battery performance.

This greater understanding and improvement in the science behind the battery materials could accelerate developments in battery performance, specifically in applications such as electric vehicles.

(READ: “Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries“)

“We’ve uncovered a new mechanism at play in this class of lithium-rich cathode materials,” says Meng, past guest editor of JES Focus Issue on Intercalation Compounds for Rechargeable Batteries. “With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity.”

(more…)

When lithium-ion pioneers M. Stanley Whittingham, Adam Heller, Michael Thackeray, and of course, John Goodenough were in the initial stages of the technology’s development in the 1970s through the late 1980s, there was no clear idea of just how monumental the lithium-based battery would come to be. Even up to a few years ago, the idea of an electric vehicle or renewable grid dependent on lithium-ion technology seemed like a pipe dream. But now, electric vehicles are making their way to the mainstream and with them comes the commercially-driven race to acquire lithium.

Just look at the rise of Tesla and success of the Nissan LEAF. Not only are these cars speaking to a real concern for environmental protection, they’re also becoming the more affordable option in transportation. For example, the LEAF goes for less than $25,000 and gets more than 80 miles per charge. Plus, electric vehicles can currently run on electricity that’s costing around $0.11 per kWh, which is roughly equivalent to $0.99 per gallon. The last year alone saw a 60 percent spike in the sale of electric vehicles.

“Electric cars are just plain better,” says James Fenton, director of the Florida Solar Energy Center and newly appointed ECS Secretary. “They’re cheaper to buy up front and they’re cheaper to operate, which years ago, was not the case.”

All things considered, lithium may just be the number one commodity of our time.

But this movement is not specific to the U.S. alone. In Germany – a country dedicated to a renewable future – there is a mandate that all new cars in the country will have to be emission-free by 2030. Similarly in Norway, the government is looking to ban gasoline-powered cars by 2025.

So with the transportation sector heading away from gasoline-powered cars and toward lithium battery-based vehicles globally, what will that do to lithium supplies?

(more…)

Hearing aid battery

One pair of ZPower hearing aid batteries can keep more than 200 disposable batteries out of the landfill.
Image: ZPower

Lithium based technologies have been dominant in the battery arena since Sony commercialized the first Li-ion battery in 1991. ECS member Jeff Ortega, however, believes that a different material holds more promise than its lithium competitor in the world of microbattery technology.

During the 229th ECS Meeting, Ortega presented work that focused on the analysis of data from commercially available rechargeable Li-ion and Li-polymer cells. He then compared the silver-zinc button cells of ZPower, where he currently serves as the company’s director of research. His results showed that the company’s silver-zinc button cells offer both greater capacity and greater density than their Li-ion and Li-polymer counterparts. Additionally, Ortega stated that the cells are also generally safer and better for the environment.

[MORE: Read Ortega’s meeting abstract.]

According to Ortega, the small silver-zinc cells have 57 percent greater energy density than both types of lithium based calls. Their potential applications including medical devices, body worn sensors, wearables, and any other microbattery application that demands long wear time. Currently, ZPower has implement these cells in hearing aid technologies.

“The ZPower Rechargeable System for Hearing Aids makes it easy to convert many new and existing hearing aids to rechargeable technology,” says Ortega in a statement. “The Rechargeable System offers a full day of power, charges overnight in the hearing aids, takes the place of an estimated 200 disposable batteries and lasts a full year. The ZPower hearing aid battery is replaced once per year by a hearing care professional, so the patient never has to touch a hearing aid battery again.”

Researchers from the University of Maryland and the U.S. Army Research Laboratory have developed a lithium-ion battery that is safer, cheaper, more powerful, and extremely environmentally friendly – all by adding a pinch of salt.

The team, led by ECS members Chunsheng Wang and Kang Xu, built on previous “water-in-salt” lithium-ion battery research – concluding that by adding a second salt to the water-based batteries, efficiency levels rise while safety risks and environmental hazards decrease.

(WATCH: Wang’s presentation at the fifth international ECS Electrochemical Energy Summit, entitled “A Single Material Battery.”)

“Our invention has the potential to transform the energy industry by replacing flammable, toxic lithium ion batteries with our safe, green water-in-salt battery,” says Wang, professor in the University of Maryland’s Department of Chemical & Biomolecular Engineering. “This technology may increase the acceptance and improve the utility of battery-powered electric vehicles, and enable large-scale energy storage of intermittent energy generators like solar and wind.”

(more…)

  • Page 2 of 4