Lead engineers, Xiaobo Yin and Ronggui Yang.
Image credit: Glenn Asakawa/CU-Boulder

According to Forbes, engineers at the University of Colorado Boulder have created a new material that works like an air conditioning system for structures—cooling rooftops with zero energy consumption.

The material, about the same thickness as aluminum foil, is rolled across the surface of a rooftop, reflecting incoming solar energy back into space while simultaneously purging its own heat. Adding to its appeal, the material is adaptable and cost-effective for use in large-scale residential and commercial applications, as it can be manufactured on rolls. (more…)

HTMWhat was once known as the High Temperature Materials (HTM) Division of The Electrochemical Society has undergone a name change. It will now be known as the High-Temperature Energy, Materials, & Processes Division (H-TEMP). The ECS Board of Directors recently approved this name change at the 233rd ECS Meeting, effective immediately.  H-TEMP includes topical interest areas such as fuel cells, electrolyzers, and energy conversion.

For several years, there has been an ongoing debate within the HTM Division about whether the name adequately represents the topical research areas, materials, and division activities such as organizing long running successful symposia, which are primarily centered around high temperature electrochemical energy conversion and storage science and technology that HTM has been heavily engaged in for the past several decades.

(more…)

NanotechnologyEngineers are developing a new method of processing nanomaterials that could lead to faster and cheaper manufacturing of flexible, thin film devices, such as touch screens and window coatings.

The “intense pulsed light sintering” method uses high-energy light over an area nearly 7,000 times larger than a laser to fuse nanomaterials in seconds.

The existing method of pulsed light fusion uses temperatures of around 250 degrees Celsius (482 degrees Fahrenheit) to fuse silver nanospheres into structures that conduct electricity. But the new study, published in RSC Advances and led by Rutgers School of Engineering doctoral student Michael Dexter, shows that fusion at 150 degrees Celsius (302 degrees Fahrenheit) works well while retaining the conductivity of the fused silver nanomaterials.

The engineers’ achievement started with silver nanomaterials of different shapes: long, thin rods called nanowires in addition to nanospheres. The sharp reduction in temperature needed for fusion makes it possible to use low-cost, temperature-sensitive plastic substrates like polyethylene terephthalate (PET) and polycarbonate in flexible devices without damaging them.

(more…)

GrapheneNew graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent, researchers report.

The nanotechnology “would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation,” according to the new paper.

“We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” says Jonathan Claussen, an assistant professor of mechanical engineering at Iowa State University, an associate of the US Department of Energy’s Ames Laboratory, and the corresponding author of the paper in the journal Nanoscale.

(more…)

AirplaneA team of researchers has created a new material that could be used in microscopic sensors, also known as microelectromechanical systems [MEMS], for devices that are part of the Internet of Things.

The technological future of everything from cars and jet engines to oil rigs, along with the gadgets, appliances, and public utilities comprising the Internet of Things will depend on these kinds of microscopic sensors. These sensors are mostly made of the material silicon, however, which has its limits.

“For a number of years we’ve been trying to make MEMS out of more complex materials” that are more resistant to damage and better at conducting heat and electricity, says materials scientist and mechanical engineer Kevin J. Hemker of Johns Hopkins University’s Whiting School of Engineering.

Most MEMS devices have internal structures that are smaller than the width of strand of human hair and are shaped out of silicon. These devices work well in average temperatures, but even modest amounts of heat—a couple hundred degrees—causes them to lose their strength and their ability to conduct electronic signals. Silicon is also very brittle and prone to break.

(more…)

Focus IssuesThe ECS Journal of Solid State Science and Technology is now featuring a focus issue on Thermoelectric Materials & Devices: Phonon Engineering, Advanced Materials and Thermal Transport. The issue reflects the symposia from the 228th ECS Meeting on Thermoelectric and Thermal Interface Materials in Phoenix, AZ.

In the issue’s preface, the authors tell us that advances in this field, “. . . can inspire developments in thermoelectrics that may underpin the next major advance in energy harvesting and cooling and ultimately improve the quality of our devices, and help drive energy efficiency and a greener society.”

The focus issue discusses advances, challenges, and applications in thermoelectrics and its various sub-fields such as phonon transport physics, materials science, electronics, condensed matter physics, engineering, the chemistry of materials, and processing technology.

The Society would like to thank the authors, reviewers, and editors who contributed to this focus issue. Special thank you to Colm O’Dwyer from University College Cork, Renkun Chen from the University of California, San Diego, Jr-Hau He from King Abdulla University of Science and Technology, Jaeho Lee from the University of California Irvine, and Kafil M. Razeeb from University College Cork.

Read the focus issue in the ECS Digital Library.

Modified Cathode

Cathode particles treated with the carbon dioxide-based mixture show oxygen vacancies on the surface.
Image: Laboratory for Energy Storage and Conversion, UC San Diego

An international team of researchers has recently demonstrated a 30 to 40 percent increase in the energy storage capabilities of cathode materials.

The team, led by ECS member and 2016 Charles W. Tobias Young Investigator Award winner, Shirley Meng, has successfully treated lithium-rich cathode particles with a carbon dioxide-based gas mixture. This process introduced oxygen vacancies on the surface of the material, allowing for a huge boost to the amount of energy stored per unit mass and proving that oxygen plays a significant role in battery performance.

This greater understanding and improvement in the science behind the battery materials could accelerate developments in battery performance, specifically in applications such as electric vehicles.

(READ: “Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries“)

“We’ve uncovered a new mechanism at play in this class of lithium-rich cathode materials,” says Meng, past guest editor of JES Focus Issue on Intercalation Compounds for Rechargeable Batteries. “With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity.”

(more…)

Sustainable Battery

The new carbon-based material for sodium-ion batteries can be extracted from apples.
Image: KIT

The saying goes: an apple a day keeps the doctor away; but in this case, an apple may be the answer to the next generation of energy storage technology.

ECS member Stefano Passerini of the Karlsruhe Institute of Technology is leading a study to extract carbon-based materials for sodium-ion batteries from organic apple waste.

Developing batteries from waste

This new development could help reduce the costs of future energy storage systems by applying a cheap material with excellent electrochemical properties to the already promising field of sodium-ion batteries.

(MORE: Read more research by Passerini.)

Many researchers are currently looking to sodium-ion batteries as the next generation of energy storage, with the ability to outpace the conventional lithium-ion battery.

The future of sodium-ion batteries

Interest in sodium-ion batteries dates back to the 1980s, but discoveries haven’t taken off until recently. Researchers are now finding way to combat low energy densities and short life cycles through using novel materials such as apples.

(MORE: Read the full paper in ChemElectroChem.)

Sodium-ion batteries could prove to be the next big thing in large scale energy storage due to the high abundance of materials used in development and the relatively low costs involved.

(more…)

Graphene for Next-Gen Night Vision

Graphene is called the “wonder material” with good reason. The material hosts a slew of unique chemical and physical properties, with applications from fuel cells to biomedical to energy storage.

Now, a team from MIT is taking the material and applying it to infrared sensors to create next-gen night vision goggles. Additionally, the team is looking to take that same technology and apply it to high-tech windshields and smartphones.

We achieve night vision capabilities through thermal imaging that allows people to see otherwise invisible infrared rays that are shed as heat. This technology is useful for many different applications, such as assisting soldiers and firefighters in their duty. While night vision devices currently exist, they need bulky cooling systems to create a useful image.

Because of graphene’s electrical qualities, researchers have known that the material would be an excellent infrared detector. The team at MIT took this idea and moved forwarding in creating a less bulky night vision goggle through the utilization of graphene.

(more…)

Breakthrough in Polishing of Silicon Carbide

Microscopic interferometric images and slope images of SiC surface (a) before (PV: 23.040 nm, Ra: 1.473 nm, RMS: 1.885 nm) and (b) after (PV: 2.070 nm, Ra: 0.198 nm, RMS: 0.247 nm) polishing with soda-lime glass plate.

Microscopic interferometric images and slope images of SiC surface (a) before (PV: 23.040 nm, Ra: 1.473 nm, RMS: 1.885 nm) and (b) after (PV:
2.070 nm, Ra: 0.198 nm, RMS: 0.247 nm) polishing with soda-lime glass plate.

Guest post by Jennifer Bardwell, Technical Editor of the ECS Journal of Solid State Science and Technology (JSS).

This paper, from Kumamoto University in Japan, concerns a technique for abrasive-free polishing of silicon carbide (SiC). This topic is timely as SiC is an important material for wide bandgap electronics, both in its own right, and as a substrate for gallium nitride electronics. The reviewers note that:

“Defect free polishing of SiC surface has high significance” and that “The results are amazing”

In the words of the abstract: “The experimental results showed that an oxide layer was formed on the SiC surface as a result of the chemical reaction between the interfaces of the synthetic SiO2 glass plate and the SiC substrate. This generated oxide layer was effectively removed by polishing with the soda-lime SiO2 glass plate, resulting in an atomically smooth SiC surface with a root mean square roughness of less than 0.1 nm for 1.5 h. Obtained experimental results indicate that the component materials, temperature and water adsorptive property of the soda-lime SiO2 glass play an important role in the removal of the tribochemically generated layer on the SiC surface during this polishing.”

Read the paper.

  • Page 1 of 2
    • 1
    • 2