Holly Fruehwald, a PhD student at the University of Ontario Institute of Technology (Ontario Tech), Canada, is the recipient of the 2021 ECS Canada Section Student Award. The award recognizes a promising young engineer or scientist in whose work electrochemical science and technology and/or solid state science and technology are the central consideration.

ECS Canada Section Student Award

The section established the award, which is bestowed annually, in 1987. The winner receives a $1,500 USD prize which is awarded at an ECS Canada Section meeting. The award recipient is invited to give a lecture on the topic of his/her research.

(more…)

Veronica Augustyn
Associate Professor of Materials Science & Engineering
University Faculty Scholar
North Carolina State University, U.S.

Date: August 18, 2021
Time: 1000h EDT
Sponsor: Hiden Analytical

(more…)

The Electrochemical Society is proud to announce the Society’s distinguished members recognized as 2020 Highly Cited Researchers. The prestigious list, published by the Web of Science Group at Clarivate Analytics, identifies scientists and social scientists who produced multiple papers ranking in the top 1% by citations for their field and year of publication, demonstrating significant research influence among their peers. (more…)

New fabric developed by UMD scientists.
Credit: Faye Levine, University of Maryland

When the temperature drops, we layer up. It’s the natural thing to do—until now. According to ScienceDaily, researchers at the University of Maryland have engineered a new fabric that can automatically change its properties to trap or release heat depending on external conditions.

The textile, made from synthetic yarn with a carbon nanotube coating, is activated by temperature and humidity: making it the first of its kind. When conditions are warm and moist, such as those near a sweating body, the fabric allows heat to pass through. When conditions become cooler and drier, the fabric reduces the heat that escapes. Acting like blinds, the individual strands of yarn open and close to transmit or block heat.

(more…)

Why do synthetic 2D materials often perform orders of magnitude worse than predicted? A new understanding of this scenario could improve the materials’ performance in future electronics, photonics, and memory storage.

2D materials are films only an atom or two thick. Researchers make 2D materials by the exfoliation method—peeling a slice of material off a larger bulk material—or by condensing a gas precursor onto a substrate. The former method provides higher-quality materials, but is not useful for making devices. The second method is well established in industrial applications, but yields low performance 2D films.

The researchers demonstrated, for the first time, why the quality of 2D materials grown by the chemical vapor deposition method have poor performance compared to their theoretical predictions. They report their results in Scientific Reports.

(more…)

ElectronicsA new process for growing wafer-scale 2D crystals could enable future super-thin electronics.

Since the discovery of the remarkable properties of graphene, scientists have increasingly focused research on the many other two-dimensional materials possible, both those found in nature and those concocted in the lab.

Growing high-quality, crystalline 2D materials at scale, however, has proven a significant challenge.

Researchers led by Joan Redwing, director of the National Science Foundation-sponsored Two-Dimensional Crystal Consortium—Materials Innovation Platform, and professor of materials science and engineering and electrical engineering at Penn State, developed a multistep process to make single crystal, atomically thin films of tungsten diselenide across large-area sapphire substrates.

(more…)

Flexible materialStress a muscle and it gets stronger. Mechanically stress a new rubbery material—say with a twist or a bend—and it automatically stiffens by up to 300 percent, the engineers say.

In lab tests, mechanical stresses transformed a flexible strip of the material into a hard composite that can support 50 times its own weight.

This new composite material doesn’t need outside energy sources such as heat, light, or electricity to change its properties. And it could be used in a variety of ways, including applications in medicine and industry.

The researchers found a simple, low-cost way to produce particles of undercooled metal—that’s metal that remains liquid even below its melting temperature. Researchers created the tiny particles (they’re just 1 to 20 millionths of a meter across) by exposing droplets of melted metal to oxygen, creating an oxidation layer that coats the droplets and stops the liquid metal from turning solid. They also found ways to mix the liquid-metal particles with a rubbery elastomer material without breaking the particles.

(more…)

Scientists who introduced laser-induced graphene (LIG) enhanced their technique to produce what may become a new class of edible electronics.

The chemists, who once turned Girl Scout cookies into graphene, are investigating ways to write graphene patterns onto food and other materials to quickly embed conductive identification tags and sensors into the products themselves.

“This is not ink,” says James Tour, chair of chemistry and professor of computer science and of materials science and nanoengineering at Rice University. “This is taking the material itself and converting it into graphene.”

(more…)

ElectronsWhile tracking electrons moving through exotic materials, researchers have discovered intriguing properties not found in conventional, silicon-based semiconductors.

Unlike current silicon-based electronics, which shed most of the energy they consume as waste heat, the future is all about low-power computing. Known as spintronics, this technology relies on a quantum physical property of electrons—up or down spin—to process and store information, rather than moving them around with electricity as conventional computing does.

On the quest to making spintronic devices a reality, scientists at the University of Arizona are studying an exotic crop of materials known as transition metal dichalcogenides, or TMDs. TMDs have exciting properties lending themselves to new ways of processing and storing information and could provide the basis of future transistors and photovoltaics—and potentially even offer an avenue toward quantum computing.

(more…)

GrapheneNew graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent, researchers report.

The nanotechnology “would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation,” according to the new paper.

“We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” says Jonathan Claussen, an assistant professor of mechanical engineering at Iowa State University, an associate of the US Department of Energy’s Ames Laboratory, and the corresponding author of the paper in the journal Nanoscale.

(more…)

  • Page 1 of 8