Modified Cathode

Cathode particles treated with the carbon dioxide-based mixture show oxygen vacancies on the surface.
Image: Laboratory for Energy Storage and Conversion, UC San Diego

An international team of researchers has recently demonstrated a 30 to 40 percent increase in the energy storage capabilities of cathode materials.

The team, led by ECS member and 2016 Charles W. Tobias Young Investigator Award winner, Shirley Meng, has successfully treated lithium-rich cathode particles with a carbon dioxide-based gas mixture. This process introduced oxygen vacancies on the surface of the material, allowing for a huge boost to the amount of energy stored per unit mass and proving that oxygen plays a significant role in battery performance.

This greater understanding and improvement in the science behind the battery materials could accelerate developments in battery performance, specifically in applications such as electric vehicles.

(READ: “Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries“)

“We’ve uncovered a new mechanism at play in this class of lithium-rich cathode materials,” says Meng, past guest editor of JES Focus Issue on Intercalation Compounds for Rechargeable Batteries. “With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity.”

(more…)

Cobalt Film Produces Clean Fuel

The lab fabricated the 500-nanometer films by anodyzing a cobalt film electrodeposited on a substrate.Image: Rice University

The lab fabricated the 500-nanometer films by anodizing a cobalt film electrodeposited on a substrate.
Image: Rice University

Researchers from Rice University have discovered an efficient, robust way of drawing hydrogen and oxygen from water.

The researchers have developed a new catalyst of a cobalt-based thin film, which pumps out hydrogen and oxygen to feed fuel cells.

This from Rice University:

The inexpensive, highly porous material invented by the Rice lab of chemist James Tour may have advantages as a catalyst for the production of hydrogen via water electrolysis. A single film far thinner than a hair can be used as both the anode and cathode in an electrolysis device.

(more…)

Electrocatalyst to Make Breathing Easy in Space

The new system aims to provide oxygen for long-duration space flights.Image: University of Delaware

The new system aims to provide oxygen for long-duration space flights.
Image: University of Delaware

Neil deGrasse Tyson once said, “Space exploration is a force of nature unto itself that no other force in society can rival.” Unfortunately, there are many factors that stifle human space exploration – one of which is the lack of oxygen.

How people will breathe is a constant concern among space missions. It’s impossible to shuttle oxygen tanks out and the air recycling systems are only about 50 percent efficient when it comes to recovering oxygen from carbon dioxide – but now a new development could mean easy breathing in space.

Research on a discovery from January 2014 is being expanded to develop silver electrocatalysts that may help enable long-term space travel. The original paper, “A selective and efficient electrocatalyst for carbon dioxide reduction,” detailed a development from scientists at the University of Delaware of a silver electrocatalyst that, due to its nanoscale structure, could convert carbon dioxide to carbon monoxide with 92 percent efficiency – freeing the oxygen in the process.

(more…)

Toyota’s Fuel Cell Car Unveiled

Recently, fuel cells have been the hot topic in energy discussions. In accordance with this, Toyota has introduced its first mass-market fuel cell car that will be available for purchase next month.

The company is calling the four-seat sedan Mirai, which means “future” in Japanese. The car will first go on sale in Japan on December 15th, followed by sales in the United States and Europe in the fourth quarter of 2015.

This from Reuters:

The ultimate “green car”, fuel cell vehicles (FCVs) run on electricity made by mixing hydrogen fuel and oxygen in the air – a technology first used in the Apollo moon project in the 1960s. Its only by-product is heat and water – water so pure the Apollo astronauts drank it.

(more…)

The transparent bandage displays an oxygen-sensitive colormap.Credit: Li/Wellman Center for Photomedicine

The transparent bandage displays an oxygen-sensitive colormap.
Credit: Li/Wellman Center for Photomedicine

A paint-on, see-through bandage – fully equipped with oxygenation sensors – has been developed with the purpose of better aiding wounded soldiers and improving the success of surgeries to restore limbs and physical functions.

Not only does it protect wounds and burns as any bandage should, but it also enables direct measurement and mapping of tissue oxygen.

The “smart” bandage was developed by an international, multidisciplinary team of researchers led by Assistant Professor Conor L. Evans at the Wellman Center for Photomedicine of Massachusetts Generall Hospital (MGH) and Harvard Medical School (HMS). The group’s findings have been recently published in The Optical Society’s (OSA) open-access journal Biomedical Optics Express.

This from The Optical Society:

Now, the “smart” bandage developed by the team provides direct, noninvasive measurement of tissue oxygenation by combining three simple, compact and inexpensive components: a bright sensor molecule with a long phosphorescence lifetime and appropriate dynamic range; a bandage material compatible with the sensor molecule that conforms to the skin’s surface to form an airtight seal; and an imaging device capable of capturing the oxygen-dependent signals from the bandage with high signal-to-noise ratio.

(more…)