Objects with “negative mass” react to the application of force in exactly the opposite way from what you would expect.
Researchers have created particles with negative mass in an atomically thin semiconductor, by causing it to interact with confined light in an optical microcavity.
This alone is “interesting and exciting from a physics perspective,” says Nick Vamivakas, an associate professor of quantum optics and quantum physics at the University of Rochester’s Institute of Optics. “But it also turns out the device we’ve created presents a way to generate laser light with an incrementally small amount of power.”
The device, described in Nature Physics, consists of two mirrors that create an optical microcavity, which confines light at different colors of the spectrum depending on the spacing of the mirrors.
Researchers in Vamivakas’ lab, including co-lead authors Sajal Dhara (now with the Indian Institute of Technology) and PhD student Chitraleema Chakraborty, embedded an atomically thin molybdenum diselenide semiconductor in the microcavity.