Beyond Open Access

"The unique and longer-term part of our OA plan is to "Free the Science™": to provide all ECS content at no cost to anyone—no fees for authors, readers, and libraries."

“The unique and longer-term part of our OA plan is to “Free the Science™“: to provide all ECS content at no cost to anyone—no fees for authors, readers, and libraries.”

Published in the latest issue of Interface.

The models of scientific communication and publication—which have served us all so well for so long—are no longer fully meeting the spirit of the ECS mission, may not be financially viable, and are hurting the dissemination of the results of scientific research.

The future of Open Access (OA) can change not only scholarly publishing, but can change the nature of scientific communication itself. OA has the power to more “evenly distribute” the advantages currently given to those who can easily access the outputs of scientific research.

ECS has long been concerned with facilitating that access, and our mission has been to disseminate the content from within our technical domain, as broadly as possible, and with as few barriers as possible. To accomplish this, we have maintained a robust, high-quality, high-impact publishing program for over 100 years.

Several years ago, ECS started taking a serious look at the challenges facing us in fulfilling our mission, specifically with respect to our publishing program. The challenges—faced by others in publishing, to a greater or lesser degree—are many and have become increasingly sever.

When a commercial scientific publisher is taking a 35% net profit out of the system, compared with under 2% by ECS, something is not only wrong, but it is clear that some publishers will do anything and everything they can to keep maintaining that level of profit. For many, journal publishing has indeed become a business.

Read the rest.

Modeling Corrosion, Atom by Atom

corrosion_atom_by_atomAn article by Christopher D. Taylor in the latest issue of Interface.

In the late 20th century, computer programs emerged that could solve the fundamental quantum mechanical equations that control the interactions of atoms that give rise to bonding. These tools, first applied to molecules and bulk solid materials, then began to be applied to surfaces and, in the early 21st century, to electrochemical environments. Commercial and open-source programs are now readily available and can be used on both desktop and high-performance computing platforms to solve for the electronic structure of a given configuration of atomic centers (nuclei) and, in so doing, provide the basis for determining a whole host of properties, including electronic and vibrational spectra, electrical moments such as the system dipole, and, most importantly, the energy and forces on the atoms. Other derived properties include the extent to which each atom is charged and bond-orders, although to compute these latter properties one of a variety of methods for dividing up and quantifying the electron density associated with each atom must be selected.

The physics behind these codes is complex, and, challengingly, has no rigorous analytical solution that can be obtained within a finite allotment of time. Thus, the computer programs themselves take advantage of approximations that allow for a feasible solution but, at the same time, constrain the accuracy of the result. Nonetheless, solutions can usually be reliably obtained for model systems representing materials, interfaces, or molecules that do not exceed thousands, and, more realistically, hundreds of atoms. Given that system sizes of hundreds or thousands of atoms amount to no more than the smallest nanoparticle of a substance, the question arises: What can atomistic simulations teach us about corrosion?

Read the rest.

Everybody Writes, Nobody Reads

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

An article by Interface Co-Editor Petr Vanysek in the latest issue of the publication.

I am happy to report that people read Interface magazine. Just the other day I received a long letter commenting on the usefulness of the topical articles, this one specifically detailing the issue dealing with ionic liquids. The message of the letter was that the reviews in Interface are just as useful as the summary articles in peer-reviewed publications. Another reader, reacting to the side remark I made in my recent editorial about opening a dog kennel, wanted to unload his German shepherds on me. Yet another letter mentioned the Classics column and how nice it was to read recollections about scientists, written by other scientists and colleagues.

Interface does not have an officially gauged impact factor and we do not have a good measure of how well and thoroughly this magazine is read. Still, we like to hear that it is a useful medium for the members, the advertisers, and anybody else who may follow what shows up in our quarterly.

(more…)

corrosion_blogAn article by C. Liu and R.G. Kelly in the latest issue of Interface.

Localized corrosion is characterized by intense dissolution at discrete sites on the surface of a metal or alloy, while the remainder of the surface corrodes at a much lower rate. The ratio of the two rates is on the order of 10. Typical forms of localized corrosion include crevice corrosion, pitting, stress corrosion cracking, and intergranular corrosion. Localized corrosion represents the primary corrosion failure mode for passive/corrosion resistant materials.

There has been extensive experimental characterization of the dependence of the susceptibility to corrosion on alloy and solution composition, temperature, and other variables. Computational modeling can play an important role in improving the understanding of localized corrosion processes, in particular when it is coupled with experimental research that accurately quantifies the important characteristics that control corrosion rate and resultant morphology. There are many modeling methods that can be applied, with the choice of method driven by the goal of the modeling exercise.

(more…)

corrosion_blog_interfaceAn article by Kenji Amaya, Naoki Yoneya, and Yuki Onishi published in the latest issue of Interface.

Protecting structures from corrosion is one of the most important challenges in engineering. Cathodic protection using sacrificial anodes or impressing current from electrodes is applied to many marine structures. Prediction of the corrosion rates of structures and the design of cathodic protection systems have been traditionally based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary element method (BEM) or finite element method (FEM) to corrosion problems has been studied intensively, and these methods have become powerful tools in the study of corrosion problems.

With the progress in numerical simulations, “Inverse Problems” have received a great deal of attention. The “Inverse Problem” is a research methodology pertaining to identifying unknown information from external or indirect observation utilizing a model of the system.

Read the rest.

computer_simulation2An article by N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams published in the latest issue of Interface.

Stainless steels and other corrosion resistant alloys are generally protected from the environment by ultra-thin layers of surface oxides, also called passive films. Unfortunately, these films are not perfect and their Achilles’ heel is a propensity to catastrophic local breakdown, which leads to rapid corrosion of the metallic substructure. Aside from the safety and environmental hazards associated with these events, the economic impact is enormous.

In the oil and gas and petrochemical industries, it is of course usually possible to select from experience a corrosion-resistant alloy that will perform acceptably in a given service environment. This knowledge is to a large extent captured in industry or company-specific standards, such as Norsok M1.

However, these selections are typically very conservative because the limits tend to be driven by particular incidents or test results, rather than by fundamental understanding. Decision-making can be very challenging, especially in today’s mega-facilities, where the cost of production downtime is often staggeringly large. Thus significant practical benefits could be gained from reliable quantitative models for pitting corrosion of stainless steels. There have been several attempts to develop purely stochastic models of pitting corrosion.

Read the rest.

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are Open Access! Follow the links to get the full-text version.

“Modeling Volume Change due to Intercalation into Porous Electrodes”
Published in the Journal of The Electrochemical Society
Lithium-ion batteries are electrochemical devices whose performance is influenced by transport processes, electrochemical phenomena, mechanical stresses, and structural deformations. Many mathematical models already describe the electrochemical performance of these devices. Some models go further and account for changes in porosity of the composite electrode. Read the rest.

(more…)

Help ECS Support Young Scientists

2014highlightsImagine a world where anyone—from the student in Atlanta to the researcher in Port au Prince—can freely read the scientific papers they need to make a discovery, where scientific breakthroughs in energy conversion, sensors or nanotechnology are unimpeded by fees to access or publish research.

At ECS, that is our vision of the future. We’re working to provide open access to all ECS publications, while maintaining our high standards of peer-review and fast delivery of content.

Please help us make this vision a reality by
making a tax-deductible donation to ECS today.

Your donation fosters the growth of electrochemistry and solid state science and technology by supporting ECS publications and the participation of scientists from around the world at our biannual meetings.

Through travel grants and reduced fees, ECS enables the participation of young scientists and students who otherwise might not be able to attend an ECS meeting. This is particularly important as the work of these scientists, and all ECS members, increasingly holds the keys to solving global challenges in energy, waste and sustainability.

Please help us continue the important work of ECS by donating today.

Thank you again for your incredible work and continued support.

Cyborg Roaches Advance Science

roach

Photographs of Blaberus discoidalis (A), the transmitter circuit (B) and of a quarter coin (C) to compare the scales involved.

While browsing through the vast array of Open Access articles that ECS hosts in its Digital Library, one title in particular caught our eye here at headquarters.

I mean, it is pretty hard to ignore an academic article titled “Wireless Communication by an Autonomous Self-Powered Cyborg Insect.

The article, published in the Journal of The Electrochemical Society by researchers from Case Western Reserve University (one of the authors is ECS Board of Directors Senior VP Dan Scherson), details – to put it simply – how a cyborg cockroach can generate and transmit signals wirelessly.

(more…)

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Atomic Layer Etch (ALEt) and Atomic Layer Clean (ALC) are emerging as enabling technologies for sub 10nm technology nodes. At these scales performance will be extremely sensitive to process variation.

Atomic layer processes are the most promising path to deliver the precision needed. However, many areas of ALEt and ALC are in need of improved fundamental understanding and process development. This focus issue will cover state-of-the-art efforts that address a variety of approaches to ALEt and ALC.

Topics of interest include but are not limited to:

  • Surface reaction chemistry and its impact on selectivity
  • Plasma ion energy distribution and control methods
  • Novel plasma sources and potential application to ALEt & ALC
  • Innovative approaches to atomic layer material removal
  • Novel device applications of ALEt & ALC
  • Process chamber design considerations
  • Advanced delivery of chemicals to processing chambers
  • Metrology and control of ALEt & ALC
  • Device performance impact
  • Synthesis of new chemistries for ALEt & ALC application
  • Damage free surface defect removal
  • Process and discharge modeling

Find out more!

Deadline for submission of manuscripts is December 17, 2014.

Please submit manuscripts here.