By: Jeffrey Gardner, University of Maryland, Baltimore County

EnzymeWhen people hear about prospecting, they might imagine old forty-niners (miners) with pickaxes hunting for gold, or maybe an agent for the San Francisco 49ers (football team) scouting for new talent. In my lab we do another version, called bio-prospecting – searching for useful substances from natural sources. Bio-prospecting has produced many valuable products, including anti-cancer drugs derived from plants and extremely strong silks spun by tropical spiders. The Conversation

Our work focuses on enzymes, which are proteins that speed up chemical reactions. We are looking for new and powerful enzymes that can break apart polysaccharides – common molecules that consist of long chains of sugars. Polysaccharides are extremely abundant in the fruits and vegetables that we eat, the cotton clothes we wear and the lumber we use to build houses.

Enzymes that can break down polysaccharides have many uses – for example, in detergents that dissolve stains on clothes. Similar types of enzymes can also be used to release sugars found in plants, which can then be used for manufacturing biodegradeable plastic.

In my lab, we are searching for new enzymes that could improve biotechnology for making renewable fuels and chemicals.

(more…)

Renewable liquid fuelA team of researchers from Texas A&M University is looking to take the negative impact of excessive levels of carbon dioxide in the atmosphere and turn it into a positive with renewable hydrocarbon fuels.

Greenhouse gasses trap heat in the atmosphere and therefore impact global temperatures, making the planet warmer. Carbon dioxide, the most common greenhouse gas, is emitted into the atmosphere upon burning fossil fuels, solid waste, and wood products, and makes up 81 percent of all greenhouse gas emissions in the U.S.

“We’re essentially trying to convert CO2 and water, with the use of the sun, into solar fuels in a process called artificial photosynthesis,” says Ying Li, principal investigator and ECS member. “In this process, the photo-catalyst material has some unique properties and acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and gives them the electric potential to reduce water and CO2 into carbon monoxide and hydrogen, which together can be converted to liquid hydrocarbon fuels.”

This from Texas A&M University:

The first step of the process involves capturing CO2 from emissions sources such as power plants that contribute to one-third of the global carbon emissions. As of yet, there is no technology capable of capturing the CO2, and at the same time re-converting it back into a fuel source that isn’t expensive. The material, which is a hybrid of titanium oxide and magnesium oxide, uses the magnesium oxide to absorb the CO2 and the titanium oxide to act as the photo-catalyst, generating electrons through sunlight that interact with the absorbed CO2 and water to generate the fuel.

(more…)

Renewable liquid fuelRenewable energy is on the rise, but how we store that energy is still up for debate.

“Renewable energy is growing, but it’s intermittent,” says Grigorii Soloveichik, program director at the United States Department of Energy’s Advanced Research Projects Agency. “That means we need to store that energy and we have two ways to do that: electricity or liquid fuels.”

According to Soloveichik, electricity and batteries are sufficient for short term energy storage, but new technologies such as liquid fuels derived from renewable energy must be considered for long term storage.

During the PRiME 2016 meeting in October, Soloveichik presented a talk titled, “Development of Transformational Technologies,” where he described the advantages that carbon neutral liquid fuels have over other convention means – such as batteries – for efficient, affordable, long term storage for renewable energy sources.

Rise of renewables

In the United States, 16.9 percent of electricity generation comes from renewables – a 9.3 percent increase since 2015. Globally, climate talks such as the Paris Agreement help bolster the rise of renewable energy around the world. Soloveichik expects that growth to continue in light of the affordability of clean energy technologies and government mandates that aim at environmental protection and a reduction of the carbon footprint. However, the continued rise in renewable dependence will impact the current grid infrastructure.

“More renewables will result in more stress on the grid,” Soloveichik says. “All of these new sources are intermittent, so we need to be able to store huge amounts of energy.”

(more…)

CatalystAn interdisciplinary team made up of researchers from Stanford University and the U.S. Department of Energy’s SLAC National Accelerator Laboratory recently developed a new catalyst that carries out a solar-powered reaction 100 times faster than ever before.

Additionally, the catalyst’s performance improves as time goes on and it can stand up to intense, acidic conditions. In creating the catalyst, the researchers used less iridium than would typically be used, potentially lowering the cost to produce hydrogen or carbon-based fuels that could power a range of renewable, sustainable alternatives.

This from SLAC National Accelerator Laboratory:

The discovery of the catalyst – a very thin film of iridium oxide layered on top of strontium iridium oxide – was the result of an extensive search by three groups of experts for a more efficient way to accelerate the oxygen evolution reaction, or OER, which is half of a two-step process for splitting water with sunlight.

(more…)

New Catalyst to Generate Renewable Fuels

Water splitting into hydrogen on a metal wire and oxygen on the catalyst.Source: Yale Entrepreneurial Institute

Water splitting into hydrogen on a metal wire and oxygen on the catalyst.
Source: Yale Entrepreneurial Institute

New research out of Yale University, led by Ph.D. student Staff Sheehan, recently unveiled a new catalyst to aid in the generation of renewable fuels.

Sheehan’s main area of research has been water splitting. In his recently published paper, he takes the theories and processes involved in water splitting and uses a specific iridium species as a water oxidation catalyst. This has led to new breakthroughs in artificial photosynthesis to develop renewable fuels.

“Artificial photosynthesis has been widely researched,” Sheehan says, “but water oxidation is the bottleneck—it’s usually the most difficult reaction to perform in generating fuel from sunlight.”

(more…)