corrosion_blog_interfaceAn article by Kenji Amaya, Naoki Yoneya, and Yuki Onishi published in the latest issue of Interface.

Protecting structures from corrosion is one of the most important challenges in engineering. Cathodic protection using sacrificial anodes or impressing current from electrodes is applied to many marine structures. Prediction of the corrosion rates of structures and the design of cathodic protection systems have been traditionally based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary element method (BEM) or finite element method (FEM) to corrosion problems has been studied intensively, and these methods have become powerful tools in the study of corrosion problems.

With the progress in numerical simulations, “Inverse Problems” have received a great deal of attention. The “Inverse Problem” is a research methodology pertaining to identifying unknown information from external or indirect observation utilizing a model of the system.

Read the rest.

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

The Arizona Section of ECS will be hosting a meeting with special guest speaker Professor Robert F. Savinell.

Date: January 26, 2014

Time: Networking and refreshments at 6:15 PM; Seminar begins at 7:00 PM

Place: University of Arizona
Tuscon, AZ 85721
Agave Room, 4th Floor of Student Union Building

Cost: Free to attend; $5 for light refreshments

Speaker: Professor Robert F. Savinell
George S. Dively Professor of Electrochemical Engineering at Case Western Reserve University
Professor Savinell is recognized as a leading authority on electrochemical energy storage and conversion. His research has been directed at fundamental science and engineering research for electrochemical systems and novel device design, development, and optimization. Dr. Savinell has over 100 publications and seven patents in the electrochemical field. He is a past chair of ECS’s Electrolytic and Electrochemical Engineering Division, a former editor of the Journal of The Electrochemical Society, and a Fellow of ECS.

(more…)

computer_simulation2An article by N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams published in the latest issue of Interface.

Stainless steels and other corrosion resistant alloys are generally protected from the environment by ultra-thin layers of surface oxides, also called passive films. Unfortunately, these films are not perfect and their Achilles’ heel is a propensity to catastrophic local breakdown, which leads to rapid corrosion of the metallic substructure. Aside from the safety and environmental hazards associated with these events, the economic impact is enormous.

In the oil and gas and petrochemical industries, it is of course usually possible to select from experience a corrosion-resistant alloy that will perform acceptably in a given service environment. This knowledge is to a large extent captured in industry or company-specific standards, such as Norsok M1.

However, these selections are typically very conservative because the limits tend to be driven by particular incidents or test results, rather than by fundamental understanding. Decision-making can be very challenging, especially in today’s mega-facilities, where the cost of production downtime is often staggeringly large. Thus significant practical benefits could be gained from reliable quantitative models for pitting corrosion of stainless steels. There have been several attempts to develop purely stochastic models of pitting corrosion.

Read the rest.

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are Open Access! Follow the links to get the full-text version.

“Modeling Volume Change due to Intercalation into Porous Electrodes”
Published in the Journal of The Electrochemical Society
Lithium-ion batteries are electrochemical devices whose performance is influenced by transport processes, electrochemical phenomena, mechanical stresses, and structural deformations. Many mathematical models already describe the electrochemical performance of these devices. Some models go further and account for changes in porosity of the composite electrode. Read the rest.

(more…)

2014 ECS Summer Fellowship Reports

ECS logoEach year ECS awards up to five Summer Fellowships to assist students in continuing their graduate work during the summer months in a field of interest to the Society. Congratulations to the five Summer Fellowship recipients for 2014. The Society thanks the Summer Fellowship Committee for their work in reviewing the applications and selecting five excellent recipients. Applications for the 2015 Summer Fellowships are due January 15, 2015.

Get more information here.

(more…)

4 Useful Electrochemistry Websites

Websites of Note

Websites of Note are gathered by Zoltan Nagy.

This is the latest Websites of Note, a regular feature in the ECS magazine Interface researched by Zoltan Nagy, a semi-retired electrochemist.

Corrosion Electrochemistry and Kinetics – P.R. Roberge, McGraw-Hill Professional
Two very detailed introductory websites of corrosion and its connection and measurements by electrochemistry. Find the second site here.

Cathodic Protection – Deepwater Corrosion Services
A series of a large number of papers dealing with all aspects of cathodic protection, theory, and applications.

Kinetics of Aqueous Corrosion – Dept. of Materials Science and Metallurgy, (U. of Cambridge)
A very good series of teaching material about corrosion and its connection to electrochemistry with practical applications.

Anodic Protection: Its Operation and Applications – J.I. Munro and W.W. Shim, Corrosion Services Co. Ltd
Detailed theory and applications of anodic protection, which somehow nowadays does not seem very practical, though it made big news about fifty years ago.

Dr. Nagy welcomes suggestions for entries; send them to nagyz@email.unc.edu.

P.S. If you haven’t checked out Dr. Nagy’s Electrochemistry Knowledge Base, make sure to head over to the site to see the huge wealth of electrochemical resources that he has curated.

2014: Science in Review

As the year comes to a close, we’re looking back at some of the greatest innovations and discoveries that have happened in science. While we reflect on these amazing developments, we only have one question: what’s next?

Scientific American’s Stop 10 Science Stories of 2014
The team at Scientific American is reflecting on some of the greatest breakthroughs and scientific developments that will have long-lasting implications. They’re covering everything from synthetic chromosomes to gravitational waves.

Top 10 Patents for 2014
We’re closing out the year by looking back on the greatest innovations from all over the world. From alternative energies to drones and robots, these patents may just be the best inventions from 2014.

The Most Amazing Science and Technology Images of the Year
We’ve been talking about the intersection of art and science recently, and 2014 had a lot to show for that topic. Thankfully, Popular Science has rounded up some of the most mind-blowing images for us. Thanks guys.

(more…)

graphene_manchester

The heterostructures is based on 2D atomic crystals for photovoltaic applications.
Image: University of Manchester

Researchers from the University of Manchester in conjunction with the National University of Singapore have discovered an exciting new development with the wonder material graphene.

The researchers have been able to combine graphene with other one-atom thick materials to create the next generation of solar cells and optoelectronic devices.

With this, they have been able to demonstrate how multi-layered heterostructures in a three-dimensional stack can produce an exciting physical phenomenon exploring new electronic devices.

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Sensors Meet Sports: The ‘Smart’ Helmet

A UW senior medical engineer explains how the smart helmet can aid to player safety by using sensor technology.Credit: Andy Manis/Journal Sentinel

A UW senior medical engineer explains how the smart helmet can aid in player safety by using sensor technology.
Credit: Andy Manis/Journal Sentinel

Students at the University of Wisconsin-Madison are not just interested in improving technology and creating innovative design, but rather they are determined to make us rethink the way the physical and digital world interact.

These students have spent months in the University’s Internet of Things Lab, where they work to measure, monitor and control the physical world by heightening its interaction with the Internet.

The main innovation that the lab has developed is a football helmet that can detect injuries.

Cross-disciplinary teams of students have come together to develop a high-tech football helmet that has brain wave probes and a device that measures acceleration forces, which gives the ability to detect concussions on the field and directly communicate the information to medical staff.

(more…)

  • Page 5 of 9