A researcher at Georgia Tech holds a perovskite-based solar cell. Credit: Rob Felt, Georgia Tech

Perovskite-based solar cells are all around great. They offer energy efficiencies similar to those of traditional silicon-based cells, are lightweight, simple and cheap to produce, and offer physical flexibility that could unlock a wide new range of installation methods and places, according to Georgia Teach Research Horizons.

The only problem: figuring out how to produce perovskite-based energy devices that last longer than a couple of months.

Researchers at Georgia Institute of Technology, University of California San Diego, and Massachusetts Institute of Technology may be closer to solving that problem. (more…)

SolarResearchers have developed a new titanium-based material that is a good candidate for making lead-free, inorganic perovskite solar cells.

In a new paper, which appears in the journal Joule, the researchers show that the material is especially good for making tandem solar cells—arrangements in which a perovskite cells are placed on top of silicon or another established material to boost the overall efficiency.

Perovskites have emerged as a promising alternative to silicon for making inexpensive and efficient solar cells. But for all their promise, perovskites are not without their downsides. Most contain lead, which is highly toxic, and include organic materials that are not particularly stable when exposed to the environment.

“Titanium is an abundant, robust, and biocompatible element that, until now, has been largely overlooked in perovskite research,” says senior author Nitin Padture, professor of engineering and director of the Institute for Molecular and Nanoscale Innovation.

(more…)

Researchers have found a way to get electrons to travel much farther than was previously thought possible in materials for organic solar cells. This advance could make these solar cells much more useful than inorganic alternatives.

“For years, people had treated the poor conductivity of organics as an unavoidable fact, and this shows that that’s not always the case,” says research leader Stephen Forrest, professor of engineering at University of Michigan.

(more…)

SolarEngineers working to make solar cells more cost effective ended up finding a method for making sonar-like collision avoidance systems in self-driving cars.

The twin discoveries started, the researchers say, when they began looking for a solution to a well-known problem in the world of solar cells.

Solar cells capture photons from sunlight in order to convert them into electricity. The thicker the layer of silicon in the cell, the more light it can absorb, and the more electricity it can ultimately produce. But the sheer expense of silicon has become a barrier to solar cost-effectiveness.

So the engineers figured out how to create a very thin layer of silicon that could absorb as many photons as a much thicker layer of the costly material. Specifically, rather than laying the silicon flat, they nanotextured the surface of the silicon in a way that created more opportunities for light particles to be absorbed.

Their technique increased photon absorption rates for the nanotextured solar cells compared to traditional thin silicon cells, making more cost-effective use of the material.

(more…)

A new breakthrough in the measurement of solar energy flow has emerged from Lund University.

For the first time ever, researchers have successfully demonstrated the accurate measurement of solar energy in and between different parts of a photosynthetic organism. Gaining this basic understanding could potentially open doors to the development of solar energy technologies with much higher efficiency levels.

Researchers have known about the photochemical reactions inside organisms for over 80 years, but have not understood exactly how solar energy is transported to the organism.

“Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion,” says Donatas Zigmantas, co-author of the study. “That is why new knowledge about photosynthesis will become useful for the development of future solar technologies.”

(more…)

Researchers aim to assess the economic and technical feasibility of these luminescent solar concentrators. Image: Eindhoven University of Technology

Researchers aim to assess the economic and technical feasibility of these luminescent solar concentrators.
Image: University of Technology

The Netherlands is making a push toward renewable energy sources with their new testing of solar energy generating noise barriers, which will be installed along highways. Researchers are currently testing the first phase of these energy storage devices, which generate electricity using solar cells integrated in noise barriers.

Researchers from Eindhoven University of Technology have implemented luminescent solar concentrators (LSCs) that are aesthetically attractive and should lead to promising energy efficiency levels.

“Further benefits are that the principle used is low cost, they can be produced in any desired, regular color, is robust, and the LSCs will even work when the sky is cloudy. That means it offers tremendous potential,” said Michael Debije of Eindhoven University of Technology’s Department of Chemical Engineering and Chemistry.

(more…)

Shortcut to Solar Cells

black-silicon

The newly developed black silicon has the potential to simplify the manufacturing of solar cells due to the ability of the material to more efficiently collect light.
Image: Barron Group

One of the roadblocks in developing a new, clean energy infrastructure lies in our ability to manufacture solar cells with ease and efficiency. Now, researchers from Rice University may have developed a way to simplify this process.

In Andrew Barron’s Rice University lab, he and postdoctoral student Yen-Tien Lu are developing black silicon by employing electrodes as catalysts.

The typical solar cell is made from silicon. By swapping that regular silicon for black silicon, solar cells gain a highly textured surface of nanoscale spikes that allows for a more efficient collection of light.

This from Rice University:

Barron said the metal layer used as a top electrode is usually applied last in solar cell manufacturing. The new method known as contact-assisted chemical etching applies the set of thin gold lines that serve as the electrode earlier in the process, which also eliminates the need to remove used catalyst particles.

(more…)

Engineering a Better Solar Cell

This new development will lead to accelerated improvements in the materials' uniformity, stability, and efficiency.Source: University of Washington

This new development will lead to accelerated improvements in the materials’ uniformity, stability, and efficiency.
Source: University of Washington

In light of the growth in solar energy research, scientists have been directing a lot of attention toward perovskites. The materials’ wide range of use and potential to outpace silicon-based semiconductors in the field of solar cells makes perovskites an interesting area of research with great potential.

Researchers from the University of Washington, in conjunction with the University of Oxford, have discovered a new quality to perovskites that could help engineer a better solar cell.

The researchers have shown in their research that, contrast to popular belief, the perovskites are uniform in composition. The materials actually contain flaws that can be engineered to improve solar devices even further.

“In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today’s silicon-based solar cells, rivaling technology that took 50 years to develop,” said Dane deQuilettes, a University of Washington doctoral student. “But we also suspect there is room for improvement.”

(more…)

Call for Papers: JSS Focus Issue

focus_issues_coversThe editors of the ECS Journal of Solid State Science and Technology are calling for papers for the upcoming focus issue: Novel Applications of Luminescent Optical Materials.

Submission Deadline: July 15, 2015

Submit your manuscript today!

The research landscape of luminescent and optical materials is rapidly changing due to a need for such materials outside the lighting and display technologies. Novel materials are needed and are developed with luminescent and optical properties appropriately tuned for applications in solar cells, sensors, bio-imaging, light extraction, and related opto-electronics in addition to solid state lighting and display technologies.

Find out more.

Read previous focus issues in ECS journals.

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are Open Access! Follow the links to get the full-text version.

“Modeling Volume Change due to Intercalation into Porous Electrodes”
Published in the Journal of The Electrochemical Society
Lithium-ion batteries are electrochemical devices whose performance is influenced by transport processes, electrochemical phenomena, mechanical stresses, and structural deformations. Many mathematical models already describe the electrochemical performance of these devices. Some models go further and account for changes in porosity of the composite electrode. Read the rest.

(more…)

  • Page 1 of 2
    • 1
    • 2