Mark Glick speaking at the 6th International ECS Electrochemical Energy Summit.

Mark Glick speaking at the 6th International ECS Electrochemical Energy Summit.

Global investments in renewable energy have continued to grow over the past five years, exceeding $329 billion in 2015. As technological solutions that drive down costs continue to emerge, more countries are adopting standards to encourage the growth of renewable energy. In the United States, Hawaii is looking to set the standard in clean, sustainable energy for the entire country.

During the October PRiME 2016 meeting in Honolulu, HI, policy makers and researchers from around the world came together for the 6th International ECS Electrochimical Energy Summit, focused on Recent Progress in Renewable Energy Generation, Distribution, and Storage.

“For us, it’s important that we continue to bring the opinion leaders as well as the leading scientists and researchers to Hawaii because we believe that we’re the center of a lot of important activity,” Mark Glick, summit moderator and Hawaii State Energy Office Administrator, tells ECS. “There’s nothing more exciting to demonstrate relevancy than to have the leading scientists in the world in the largest research conference of its kind come to Hawaii.”

One hundred percent renewable standard

Since 2008, Hawaii has been on the cutting-edge of the renewable energy industry in the United States. As oil prices rocketed from $74.44 to $102 a barrel (inflation adjusted), the state found itself in a unique position to commit to greater utilization of renewable energy sources.

“After the oil price shock, we decided we needed to change our course,” Glick says. “So we set forth a renewable portfolio standard. At that time, we aimed for 40 percent renewable energy by 2030. Since then, we’ve been so successful at getting ahead of the curve on that renewable portfolio standard.”

(more…)

Last week, EV superpower Tesla announced its latest product: roof tiles with built-in solar cells. By merging technological performance with aesthetics, Tesla hopes to offer consumers solutions to make their homes more energy self-sufficient.

Using PV roofing material instead of traditional rooftop solar panels helps the company consolidate costs. According to Tesla CEO Elon Musk, there are between four and five million new roofs constructed in the United States each year, which gives him a broad market.

Musk says that the roof tiles have the potential to integrate with Tesla’s Powerwall battery as well as the company’s electric cars, providing customers new, interconnected energy experiences. The CEO claims that roofs made from the new solar material would last up to three times as long as a typical 20-year-cycle roof and be more impact resistant.

However, critics of Tesla’s latest move highlight potential issues related to many different factors, including: location, energy storage capabilities, the practicality and cost of replacing a roof, and the difficulty in integrating PV technology into infrastructure. Tesla has not specified the technology behind their solar cells, but have claimed that they achieve 98 percent of the efficiency of traditional solar panels.

TeslaOne year ago Tesla Motors announced plans to build its Gigafactory to produce huge numbers of batteries, giving life to the old saying, “if you want something done right, do it yourself.”

By making electric car batteries that Tesla used to buy from others, CEO Elon Musk adopted a strategy made famous by Henry Ford – build a vertically integrated company that controls the many stages of production. By integrating “backward” into its supply chain, Musk is betting Tesla can improve the performance and lower the costs of batteries for its vehicles.

Now, Musk wants Tesla to acquire SolarCity for similar reasons, but with a slightly different twist.

SolarCity is one of the largest installers of solar photovoltaic panels, with some 300,000 residential, commercial and industrial customers in 27 states. The proposed merger with SolarCity would vertically integrate Tesla forward, as opposed to backward, into the supply chain. That is, when people come to Tesla stores to buy a vehicle, they will be able to arrange installation of solar panels – and potentially home batteries – at the same time.

This latest move would bring Tesla one step closer to being the fully integrated provider of sustainable energy solutions for the masses that Elon Musk envisions. But does it make business sense?

The real issue in my mind comes down to batteries and innovation.

Creating demand and scale

Although installing batteries is not a big part of SolarCity’s current business, the company is a potentially large consumer of Tesla’s batteries from the Gigafactory. Tesla makes Powerwall batteries for homes and larger Powerpack systems for commercial and industrial customers.

Any increase in the flow of batteries through the factory gives Tesla better economies of scale and potential for innovation. Innovation comes with the accumulated experience gained from building a key component of its electric vehicles as well as Tesla’s energy storage systems. As the company manufactures more batteries, it will find ways to innovate around battery design and production.

(more…)

Solar-to-Hydrogen Production

The device is able to convert solar energy into hydrogen at a rate of 14.2 percent, and has already been run for more than 100 hours straight.
Image: Infini Lab/EPFL

One of the biggest barriers between renewables and widespread grid implementation has been the issue of intermittency. How can we meet a nation’s energy demands with solar when the sun goes down?

In an effort to move past these barriers toward a cleaner energy infrastructure, a new paper published in the Journal of The Electrochemical Society describes an effective, low-cost solution for storing solar energy.

The research team from Ecole Polytechnique Fédérale de Lausanne is looking to covert solar energy into hydrogen through water electrolysis. At its core, the concept revolves around using solar-produced electricity to split water molecules into hydrogen and oxygen, leaving clean hydrogen to be stored as future energy or even as a fuel.

But this idea is not new to the scientific community. However, the research published in JES provides answer to continuous barriers in this field related to stability, scaling, and efficiency.

(more…)

solarA team of researchers from the National Renewable Energy Laboratory, in collaboration with a team from Shanghai Jiao Tong University, has developed a method to improve perovskite solar cells – raising both efficiency and reliability levels while make them easier to produce.

Perovskite cells have become one of the more promising technologies in the future of energy. In 2010, the young technology functioned at under 4 percent efficiency. Fast-forward to 2016, and researchers and showing efficiency levels of upwards of 20 percent.

However, it’s been difficult to produce these cells and the lack of stability and dependability has become a focal issue.

This from NREL:

The research involved hybrid halide perovskite solar cells and revealed treating them with a specific solution of methyl ammonium bromide (MABr) would repair defects, improving efficiency. The scientists converted a low-quality perovskite film with pinholes and small grains into a high-quality film without pinholes and with large grains. Doing so boosted the efficiency of the perovskite film in converting sunlight to 19 percent.

(more…)

Just over one year ago, the world’s first solar-powered plane set off on a journey around the world. Stocked with 17,000 solar cells, the so-dubbed Solar Impulse 2 looked to break a world record and highlight the feasibility of solar energy by flying the long-distance powered only by the sun.

The plane finally completed its journey, in spite of a few complications, on July 26 when it touched down in Abu Dhabi. The effort is seen by many as a pioneering example of the power or alternative energies.

However, this first of its kind plane did not take shape overnight. Solar Impulse 2 is the brainchild of Swiss pilots Bertrand Piccard and Andre Borschberg, who have labored over the machine for the better part of 13 years.

This from IFLScience:

To keep its power running, the plane flew above the clouds to collect sunlight during the day, before dipping down lower at night to save its batteries. And owing to being completely solar powered, it packed a modest top speed of just 75 km/h (47 mph).

(more…)

An interdisciplinary team of researchers based out of the University of Illinois at Chicago believes they may have just changed the game in solar cell technology.

According to the recently published study, the team promises a solar cell that not only harvests energy, but cheaply and efficiently transforms atmospheric carbon dioxide into useable hydrocarbon fuel – all with a little help from the sun.

The new development differs from typical solar technology, where the cells convert sunlight into energy to be stored in batteries or other energy storage devices. Instead, the new research uses solar cells in a way similar to organic photosynthesis, just amplified.

By capturing dangerous greenhouse gases and converting them into alternative, clean fuels, the researchers believe a farm full of these “artificial leaf” solar cells could begin to significantly reduce the amount of carbon dioxide in the environment and help shift the energy landscape toward more green alternatives.

“The new solar cell is not photovoltaic—it’s photosynthetic,” says Amin Salehi-Khojin, senior author of the study. “Instead of producing energy in an unsustainable one-way route from fossil fuels to greenhouse gas, we can now reverse the process and recycle atmospheric carbon into fuel using sunlight.”

(more…)

A new breakthrough in the measurement of solar energy flow has emerged from Lund University.

For the first time ever, researchers have successfully demonstrated the accurate measurement of solar energy in and between different parts of a photosynthetic organism. Gaining this basic understanding could potentially open doors to the development of solar energy technologies with much higher efficiency levels.

Researchers have known about the photochemical reactions inside organisms for over 80 years, but have not understood exactly how solar energy is transported to the organism.

“Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion,” says Donatas Zigmantas, co-author of the study. “That is why new knowledge about photosynthesis will become useful for the development of future solar technologies.”

(more…)

Elon Musk

Elon Musk via Insider Monkey/Flickr

By now you’ve probably heard of the big merger between automotive innovator Tesla and rooftop solar guru SolarCity. Elon Musk, CEO of Tesla, claims that the integration will create “the world’s first vertically integrated energy company,” set to offer the full spectrum of clean energy products to customers.

While both companies have gotten a lot of attention from investors over the years, there has been a lot of skepticism when it comes to the financial future of the joining of these two companies.

First, neither companies have made any money independently last year. In fact, combined they lost $1.7 billion.

But the financial losses are not the real concern. As MIT Technology Review points out, the technology that would make an end-to-end clean energy system feasible has not yet been developed by either company.

Musk’s vision for the newly integrated company is to set up consumers to solely utilize renewable energy. That would mean electric vehicles, rooftop solar panels, and of course, a battery to store energy when the sun goes down.

Although Tesla has already premiered their home Powerwall battery, it fell short of expectations. The seven-kilowatt-hour battery was expected to be able to store enough energy to power your home and send energy back to the grid (converting homes to microgrids) for a flat rate of $3,000, but the actual cost turned out to be closer to $10,000.

Pair that cost with SolarCity panels and analyses show that you’ll be paying over double for your electricity than a typical rate user.

“At the end of the day, the Powerwall has the same Li-ion battery cells in it as any other Li-ion-based storage product: Asian-sourced batteries that are arranged in packs,” Jay Whitacre, ECS member and professor at Carnegie Mellon University, told MIT Technology Review. “It’s basically off-the-shelf cell technology.”

Fossil fuel prices may be dropping, but according to new reports from Bloomberg’s New Energy Outlook, those prices will not affect the future of renewable energy.

According to the report, renewables are on pace to attract $7.8 trillion in investments by 2040. That’s nearly four times the amount that Bloomberg expects carbon-based power to attract over the same period of time.

Experts expect the relatively low fossil fuel prices to by offset by projected price drops of up to 60 percent in wind and solar technologies, making renewables the most efficient and most affordable option.

“Strikingly, [the report] still shows rapid transition toward clean power,” says Jon Moore, chief executive of Bloomberg New Energy Finance.

However, that transition may not be fast enough to counteract the effects of climate change. In order to keep the global temperate change below 2°C – a point that was emphasized in the Paris agreement – an additional $5.3 trillion would have to be invested in zero-carbon power on top of the $7.8 trillion.

  • Page 3 of 9