Is Solar Cheaper than Grid Electricity?

Q3_2014_Price_per_kilowatt_hour_by_RegionIf you haven’t embraced solar energy yet, it may be about time to do so. After all, it is cheaper than grid energy in 42 of the 50 largest cities in the United States.

According to the study “Going Solar in America: Ranking Solar’s Value in America’s Largest Cities,” a fully financed solar system costs less than residential grid energy purchased in over 80 percent of the largest U.S. cities. Additionally, 9.1 million single-family homeowners live in a place where their utility bill outpaces what solar would cost.

The falling cost of solar panels and solar fuel cells is largely driven by, in part, research into new materials and developments in the sciences. Check out a few interesting reads on solar energy from the ECS Digital Library:

(more…)

The Solar Breakthrough

wood_mackenzieCountries around the world have been embracing solar energy with open arms – just take a look at Germany or Switzerland. In the United States, however, solar energy has made its way into the mainstream, but has not gone as far as many environmentalists would like. With the advances in drilling technology in the U.S., one is left to wonder what the next big breakthrough in the nation’s energy supply will be.

The Wood Mackenzie consultant agency out of Scotland believes the next big thing in energy in the U.S. will be solar, and they’ve got some pretty solid reasons.

(more…)

Making Solar Wallpaper

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.Image: Antti Veijola

Design freedom improves the range of applications of the panels on the surfaces of interior and exterior building spaces.
Image: Antti Veijola

We’ve been talking about climate change and green energy for a while now, so of course we think solar panels should exist wherever light is. Now, that could mean using solar wallpaper to harvest as much energy as possible.

VTT Technical Research Centre of Finland has developed and utilized a mass production method based on printing technologies that will allow the manufacturing of decorative, organic solar panels for use on the surfaces of interior and exterior building spaces.

The new organic photovoltaic panels are only 0.2 mm thick each and include the electrodes and polymer layers where the light is collected.

(more…)

Image: Antalexion

Image: Antalexion

With climate change being a continually rising global dilemma, many scientist have turned their attention to research in the area of renewable energy sources. Even with some of the most brilliant minds working on improving efficiency and price of solar cells, they are still not widely used due to the high cost of materials used to develop the them. Now, a scientist may be on the path to cracking the code on material prices of solar cells by using nanotechnology.

Elijah Thimsen, assistant professor at the School of Engineering & Applied Science at Washington University in St. Louis, worked in conjunction with a team of engineers at the University of Minnesota to develop a technique to increase the performance of electrical conductivity.

(more…)

Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample.Photo: J. Adam Fenster / University of Rochester

Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample.
Photo: J. Adam Fenster / University of Rochester

New super-hydrophobic metals developed at the University of Rochester could mean big things for solar innovation and sanitation initiatives.

The researchers, led by Professor Chunlei Guo, have developed a technique that uses lasers to render materials extremely water repellant, thus resulting in rust-free metals.

Professor Guo’s research in novel not in the sense that he and his team are creating water resistant materials, instead they are creating a new way to develop these super-hydrophobic materials by taking away reliance on chemical coatings and shifting to laser technology.

(more…)

graphene_manchester

The heterostructures is based on 2D atomic crystals for photovoltaic applications.
Image: University of Manchester

Researchers from the University of Manchester in conjunction with the National University of Singapore have discovered an exciting new development with the wonder material graphene.

The researchers have been able to combine graphene with other one-atom thick materials to create the next generation of solar cells and optoelectronic devices.

With this, they have been able to demonstrate how multi-layered heterostructures in a three-dimensional stack can produce an exciting physical phenomenon exploring new electronic devices.

(more…)

45.7% Efficiency for Concentrator Solar Cell

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.Credit: NREL (Click to enlarge)

This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.
Credit: NREL (Click to enlarge)

Improvements in solar power are being developed all around the world, with scientist and researchers continuously attempting to apply electrochemistry and other sciences to solar cells in order to improve efficiency. Recently, the National Renewable Energy Laboratory (NREL) has reported one of the highest photovoltaic cell efficiencies achieved across all types of solar cells.

Researchers at the NREL have demonstrated a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration.

(more…)

Innovation in Spray-on Solar Power

The SparyLD system developed by University of Toronto researchers can spray colloidal quantum dots onto flexible surfaces.Credit: University of Toronto

The SparyLD system developed by University of Toronto researchers can spray colloidal quantum dots onto flexible surfaces.
Credit: University of Toronto

Teams of scientists from around the world have been working on a way to produce spray-on solar cells for some time now. Recently, a team from the University of Toronto Faculty of Applied Science & Engineering has moved to the forefront of the race due to their latest breakthrough involving a new method for spraying solar cells onto flexible surfaces.

The prototype applies colloidal quantum dots via spray. These dots are a type of nanotechnology material that are light-sensitive.

This from Gizmag:

In such spray on solar cells, quantum dots would act as the absorbing photovoltaic material. Because they have a band gap that can be tuned by altering the size of their nanoparticles, they can be made to soak up different parts of the solar spectrum. This could prove particularly valuable if they were to be used in multi-junction solar cells, where dots small and large could sit alongside each other to widen the cells’ energy harvesting potential.

(more…)

Solar Tech to Enable First Underground Park

The Lowline is not just a design project. It’s not just an example of innovative technology. It’s not just an effort to revitalize a community. The Lowline is an example of how science and drive can improve and transform the landscape of modern cities.

If you haven’t yet heard of Lowline, it will essentially be an underground park powered by innovative solar technology located in the 116-year-old abandoned Williamsburg Bridge Trolley Terminal in the Lower East Side of Manhattan.

The technology is designed by James Ramsay of Raad Studio, who looks to overcome subterranean limitations with his underground oasis of plants and trees.

(more…)

Old Blu-Ray Discs to Make Better Solar Panels

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.Credit: Northwestern University

An interdisciplinary team from the McCormick School of Engineering and Applied Science discovered that using the data storage pattern from a Blu-ray disc improves solar cell performance and that video content doesn’t matter.
Credit: Northwestern University

Since its launch, the Blu-ray disc has been promoted as the bigger, better, and more impressive way to view movies at home. But researchers from Northwestern University are now telling us that Blu-ray discs are good for more than just giving us a better home viewing experience.

An interdisciplinary team from the McCormick School of Engineering and Applied Science at Northwestern University has published research stating that Blu-ray discs can be used to improve the performance of solar cells.

(more…)

  • Page 8 of 9