Diamond Nanothreads to Build Space Elevator

18enfuwsagjl5jpgThe space elevator: a concept first conceptualized in the late 19th century that has been highly disputed and contested over the years. Many scientists and research institutions believe that the space elevator can be actualized in our lifetime. Up until 2014, Google X’s Rapid Evaluation R&D team was still working on bringing this concept to life. However, the project came to a halt due to the lack of advancement in the field of carbon nanotubes—the material that many deemed necessary to meet the strength requirements for the space elevator.

But work in the field of carbon nanotubes pressed on, and in 2014 diamond nanothreads were first synthesized. With strength properties similar to that of carbon nanotubes, researchers are once again interested in the development of the space elevator.

After testing from the Queensland University of Technology in Australia, researchers are putting a breath of fresh air into the space elevator with large scale diamond nanothreads, which may potentially be the world’s strongest substance.

(more…)

The core of the nanothreads is a long, thin strand of carbon atoms arranged just like the fundamental unit of a diamond's structure.Credit: John Badding Lab, Penn State University

The core of the nanothreads is a long, thin strand of carbon atoms arranged just like the fundamental unit of a diamond’s structure.
Credit: John Badding Lab, Penn State University

A team of scientists have recently discovered how to produce ultra-thin “diamond nanothreads.” These nanothreads, which construct a structure more than 20,000 times smaller than average human hair, are expected to yield extraordinary properties. The new nanothreads will be stronger and stiffer than current nanotubes, and they will also be light in weight.

This means creating the potential for more fuel efficient vehicles, and even fictional-sounding endeavors – such as a “space elevator.”

This from Carnegie Science:

The team—led by John Badding, a chemistry professor at Penn State University and his student Thomas Fitzgibbons—used a specialized large volume high pressure device to compress benzene up to 200,000 atmospheres, at these enormous pressures, benzene spontaneously polymerizes into a long, thin strands of carbon atoms arranged just like the fundamental unit of diamond’s structure—hexagonal rings of carbon atoms bonded together, but in chains rather than the full three-dimensional diamond lattice.

(more…)