Graphene’s New Role in Water-Splitting

5592616537473The topics of climate change and the energy crisis are on the minds of many scientists working in the fields of energy storage and conversion. When looking toward the future, the development of more efficient and effective energy storage technologies is critical. Instead of our traditional “carbon cycle,” researchers are beginning to focus on the “hydrogen cycle” as a promising alternative.

With this, there been a lot of focus on water-splitting techniques. However, there are many challenges that this technology has to overcome before it reaches efficient levels on a large scale.

In order to help address complications associated with water-splitting, ECS member Qiang Zhang is leading a research group from Tsinghua University to help get closer to the ultimate goal of the “hydrogen cycle” by developing a novel graphene/metal hydroxide composite with superior oxygen evolution activity.

(more…)

Researcher from Stanford University have developed a new device that has made water-splitting more practical and boosted efficiency levels to an unprecedented 82 percent.

With just one catalyst, the novel water-splitting device can continuously generate hydrogen and oxygen for more than 200 hours with a steady input of just 1.5 volts of electricity.

Through this new device, researchers can produce renewable sources of clean-burning hydrogen fuel.

The Stanford researchers are using just one catalyst instead of the traditional two in water-splitting processes, which allows the cost to drop significantly.

“For practical water splitting, an expensive barrier is needed to separate the two electrolytes, adding to the cost of the device. But our single-catalyst water splitter operates efficiently in one electrolyte with a uniform pH,” said Haotian Wang, lead author of the study and graduate student at Stanford.

(more…)

Rutgers researchers Martha Greenblatt (left) and Chalres Dismukes (right) have developed a cost-effective energy storage technology to advance sustainable energy.Image: Nick Romaneko/Rutgers University

Rutgers researchers Martha Greenblatt (left) and Chalres Dismukes (right) have developed a cost-effective energy storage technology to advance sustainable energy.
Image: Nick Romaneko/Rutgers University

Dan Fatton, ECS Director of Development & Membership services, spotted an article in My Central Jersey that details a potential game changer in sustainable energy.

Researchers from Rutgers University may have just found the key to advancing renewable resources and potentially growing an energy infrastructure based on sustainability.

The researchers from Rutgers’ Chemistry and Chemical Biology Department have recently developed a novel patent-pending energy storage technology grounded in electrochemical science. The new technology is said to not only be cost-effective, but also a highly efficient way to store sustainable energy for later use.

The research published in the journal Energy & Environmental Science addresses the feasibility of widespread utilization of sustainable power.

“We have developed a compound, Ni5P4 (nickel-5 phosphide-4), that has the potential to replace platinum in two types of electrochemical cells: electrolyzers that make hydrogen by splitting water through hydrogen evolution reaction (HER) powered by electrical energy, and fuel cells that make electricity from combining hydrogen and oxygen,” co-author of the study Charles Dismukes explained to My Central Jersey.

(more…)

New Catalyst to Generate Renewable Fuels

Water splitting into hydrogen on a metal wire and oxygen on the catalyst.Source: Yale Entrepreneurial Institute

Water splitting into hydrogen on a metal wire and oxygen on the catalyst.
Source: Yale Entrepreneurial Institute

New research out of Yale University, led by Ph.D. student Staff Sheehan, recently unveiled a new catalyst to aid in the generation of renewable fuels.

Sheehan’s main area of research has been water splitting. In his recently published paper, he takes the theories and processes involved in water splitting and uses a specific iridium species as a water oxidation catalyst. This has led to new breakthroughs in artificial photosynthesis to develop renewable fuels.

“Artificial photosynthesis has been widely researched,” Sheehan says, “but water oxidation is the bottleneck—it’s usually the most difficult reaction to perform in generating fuel from sunlight.”

(more…)

  • Page 2 of 2
    • 1
    • 2