From batteries to nanostructures
Each topical interest area listed below has corresponding divisions through ECS. Learn more about ECS Divisions.
Electrochemical
Batteries and Energy Storage
Areas of interest include theoretical and experimental aspects of batteries, electrochemical capacitors, and redox flow batteries. Specific topics include design, modeling, and testing; electrode structures and characterization, including charge storage materials, binders, additives, membranes, electrolytes, conductivity enhancers, and current collectors as they relate to batteries and energy storage. Also of interest are issues that pertain to safety, such as development and implementation of methods for its assessment.
Division: Battery
Corrosion Science and Technology
Areas of interest include all experimental and theoretical aspects of corrosion. Specific topics include physicochemical basis of corrosion and kinetics; passivity; localized corrosion; corrosion protection including surface treatments and coatings; anode behavior; high temperature corrosion and oxidation; methods for the study of corrosion including spectroscopy and electrochemical techniques and scanning probe microscopies; numerical simulations, computational chemistry, and mathematical modeling as applied to corrosion.
Division: Corrosion
Electrochemical/Electroless Deposition
Areas of interest include deposition of metals, oxides, semiconductors, nanostructures, and composite materials; nanofabrication; fundamental aspects of nucleation and growth; physical and mechanical aspects of deposits, including structure and internal stress; modeling; industrial plating and plating baths; leveling, accelerating, and suppressing agents.
Division: Electrodeposition
Electrochemical Engineering
Areas of interest include industrial electrochemistry; the mathematical modeling of electrochemical reactors and devices; electrochemical machining; and the electrochemical synthesis of compounds. Specific topics include: kinetics, selectivity, and yields; mass, momentum, and heat transport; and electrode designs and evaluation.
Division: IE&EE
Fuel Cells, Electrolyzers, and Energy Conversion
Areas of interest include theoretical and experimental aspects of all types of fuel cells, electrolyzers, photovoltaics, and photoelectrochemistry. Specific topics as relates to energy conversion include design, modeling, testing, and evaluation; novel electrode structures and their characterization, including electrocatalytic materials and electrocatalysis; engineering aspects of fuel, electrochemical fuel synthesis, water, and thermal management. Materials at high temperatures are included.
Division: ETD and H-TEMP
Organic and Bioelectrochemistry
Areas of interest include all aspects related to the electrochemical properties and behavior of organic and biological materials. Specific topics include synthetic and mechanistic electrochemistry, and electrocatalysis of organic and bioelectrochemical systems; organic and biological media; organometallics; metals in organic and biological electrode processes; asymmetric organic electrosynthesis; modified electrodes; and electronically-conducting polymers. Fundamentals aspects of biomolecular redox behavior of proteins and enzymes; enzymatic and microbial reactions; bioelectrocatalysis; electron transfer; and computational studies are of interest. Studies of organic and bioelectrochemical energy systems are appropriate.
Division: OBE
Physical and Analytical Electrochemistry, Electrocatalysis, and Photoelectrochemistry
Areas of interest include fundamental aspects of interfacial science and electroanalytical chemistry. Specific topics include double layer theory and experiments; theoretical and experimental aspects of electrocatalysis; in situ spectroscopy; photoelectrochemical cells; scanning probe methods; X-ray and electron microscopy methods; novel electrochemical measurements and practice drawn from fundamental concepts; and developments in theory.
Division: PAED
Sensors (Electrochemical)
Areas of interest include sensors for the detection and discrimination of chemical and biological species, as well as sensor advances and new methods of measurements based on electrochemical principles. Specific areas include novel development, implementation, characterization, fundamentals, and applications of chemical and biological sensors, sensor arrays and sensor networks, including those based on inorganic, organic, and biological materials and their relevant interfaces. Transduction mechanisms include, but are not limited to, electrochemical, impedance, resistive, and capacitive. Specific topics include wearable devices, implantable devices, brain-computer interface, agricultural sensors, environmental sensors, robotic sensors, sensors for healthcare, microfluidics, nanofluidics, device fabrication, materials characterization, nanomaterials and nanostructures, sensing mechanisms, sensor arrays, miniature chemical analysis systems, lab-on-a-chip, artificial intelligence, and machine learning for sensor networks.
Division: Sensor
Solid State
Carbon Nanostructures and Devices
Areas of interest include design and growth of conducting, semiconducting, and insulating carbon nanostructures including nanocarbons, nanotubes, graphene, and fullerenes. Specific topics include theoretical and experimental studies on nanotubes, graphene, and fullerenes for use in energy, catalytic, and sensor applications; electronic, photonic, electrochemical, and mechanical devices; functional materials, and chemical and physical functionalization of carbon nanostructures; supramolecular assemblies; biomedical devices; and environmental remediation.
Division: Nanocarbons
Dielectric Science and Materials
Areas of interest include theoretical and experimental aspects of inorganic and organic dielectric materials, including electrical, physical, optical, and chemical properties. Specific topics include growth processes; reliability; modeling and property measurements; polarizability; bulk and interfacial properties; interphases; reaction kinetics; phase transformations; thermodynamics; electric and ionic transport; polymers; high k, low k, and embedded dielectrics; porous dielectrics; thin and ultra-thin films.
Division: DS&T
Electronic Materials and Processing
Areas of interest include processing science and technology for electronic, optoelectronic, optical materials, films, interfaces, and devices. Specific topics include bulk crystal growth; thin film, surface, and interface growth; and interface modification to establish physical, chemical, and electrical properties of materials and structures; optical, e-beam, X-ray, ion-beam, and soft lithography; atomic layer and chemical vapor deposition for films and nanoscale materials; chemical mechanical polishing; liquid, vapor, ion-beam, and plasma etching and deposition; sputtering; anodization; evaporation; spin, dip, and spray coating; rapid thermal processing; surface modification, functionalization, and cleaning; 3D interconnects; process integration; and microfabricated systems.
Division: EPD
Electronic and Photonic Devices and Systems
Areas of interest include fundamental properties and measurements of device fabrication and characteristics for electronic and photonic applications. Specific topics include thin film transistors; MOSFETs; bipolar devices; quantum devices; silicon, germanium, and related microelectronic and photonic devices; micro- and nano-electro-mechanical systems (MEMS and NEMS); solid state sensors; wide bandgap semiconductor materials and devices; photovoltaic energy conversion devices; memories; graphene-based devices; plasmonics; power devices; silicon-on-insulator devices; and bioelectronics.
Division: EPD
Luminescence and Display Materials, Devices, and Processing
Areas of interest include theoretical and experimental science and technology of inorganic and organic luminescent materials, devices, and displays. Specific topics include photoluminescent, cathodoluminescent, and electroluminescent materials; scintillators; phosphors; lasers and light emitting diodes; organic LEDs and solid state lighting; and liquid crystal, plasma, and field emission displays.
Division: LDM
Sensors (Solid State)
Areas of interest include sensors or devices based on physical and quantum transduction principles, as well as sensor advances focused on solid state principles. Specific areas of interest include novel development, characterization, implementation, fundamentals, and applications of physical and quantum sensors. Transduction mechanisms of interest include, but are not limited to, quantum, mechanical, mass sensitive, optoelectronic, optical, radiation, thermal, acoustic, piezoelectric, resistive, microwave, and magnetic. Specific topics include wearable devices, implantable devices, brain-computer interface, agricultural sensors, environmental sensors, robotic sensors, sensors for healthcare, microfluidics, nanofluidics, device fabrication, materials characterization, nanomaterials and nanostructures, sensing mechanisms, sensor arrays, wireless sensors, and internet of things, artificial intelligence, machine learning for sensor networks. Also of interest are applications of 3D and 4D printing, microelectromechanical or nanoelectromechanical system technologies including micro/nanomachining, fabrication processes, nanocomposites, hybrid materials, packaging, and the use of these structures and processes for the miniaturization of physical sensors and other devices.
Division: Sensor