Liquid Antenna Controlled by Voltage

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.Image: Jacob Adams/NCSU

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.
Image: Jacob Adams/NCSU

The scientific community has been trying to tap into the potential of liquid metals for some time now, but have faced roadblocks in developing something that is highly efficient when paired with electronics. Now, North Carolina State University researchers have successfully designed a liquid metal antenna controlled by only electrical voltage.

The work is relatively simple in theory. A positive voltage applied to a liquid metal will make it expand, whereas the application of a negative voltage will make it contract.

“Our antenna prototype using liquid metal can tune over a range of at least two times greater than systems using electronic switches,” said Jacob Adams, assistant professor in the Department of Electrical and Computer Engineering at NCSU.

This from News Maine:

The researchers came to know if they place an electrical potential between the liquid metal and an electrolyte then liquid metal can be spread through a positive voltage and could contract by applying a negative voltage. Shape and length of the conducting paths that form an antenna determines its properties like operating frequency and radiation pattern.

Read the full article here.

The new development has many potential applications, including mobile phones.

Learn more about  liquid metals by reading the papers in the ECS Digital Library.

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *