Nanoporous Materials and Global Warming

In a practical effort to address climate change, researchers are looking at the possibility to capture harmful greenhouse gasses and transforming them into something useful for society. Recently, researchers from the University of South Carolina started exploring this topic, opening the door for more research in green fuels produced by carbon. Now, a team from the University of South Australia is taking that concept and applying nanoporous carbon nitride to help solve global warming.

With carbon dioxide levels at their highest in 650,000 years, scientists are developing innovative ways to help contain the greenhouse gas. The team at the University of South Australia, led by Ajayan Vinu, is working to capture and convert carbon dioxide molecules with the help of nanoporous materials.

“Their interesting properties—a semiconducting framework structure and ordered pores—make them exciting candidates for the capture and conversion of [carbon dioxide] molecules into methanol which can then be used as a source of green energy with the help of sunlight and water,” Vinu said.

With this project, Vinu and his team hope to significantly assist in cleaning the environment. In addition to capturing the molecules, the team plans to convert them into a clean fuel source through a low-cost photoelectrochemical semiconductor device.

“Through a strong multidisciplinary approach and deep collaboration with industries I am sure we can create tangible benefit to translate the research into real products,” Vinu said.

[Image: U.S. Water Alliance]

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *