New Approach May Accelerate Discovery of New Material for Energy Storage

BatteryA new mathematical model may help researchers design new materials for use in high-power batteries. According to the research team, the model could benefit chemists and materials scientists who typically rely on a trial and error method when developing new materials for batteries and capacitors.

“The potential here is that you could build batteries that last much longer and make them much smaller,” says Daniel Tartakovsky, co-author of the study. “If you could engineer a material with a far superior storage capacity than what we have today, then you could dramatically improve the performance of batteries.”

Demand for affordable, efficient energy storage continues to increase as more entities transition toward renewable energy. While there are many researchers working in the area of energy storage, the team behind this development is looking at the field in a new light.

This from Stanford University:

The types of materials widely used to develop energy storage, known as nanoporous materials, look solid to the human eye but contain microscopic holes that give them unique properties.

Developing new, possibly better nanoporous materials has, until now, been a matter of trial and error—arranging minuscule grains of silica of different sizes in a mold, filling the mold with a solid substance, and then dissolving the grains to create a material containing many small holes. The method requires extensive planning, labor, experimentation, and modifications, without guaranteeing the end result will be the best possible option.

Read the full article.

“We developed a model that would allow materials chemists to know what to expect in terms of performance if the grains are arranged in a certain way, without going through these experiments,” Tartakovsky says. “This framework also shows that if you arrange your grains like the model suggests, then you will get the maximum performance.”

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *