While we may have a good understanding of battery application and potential, we still lack a great deal of knowledge about what is actually happening inside a battery cell during cycles. In an effort to build a better battery, ECS members from the U.S. Department of Energy’s Argonne National Laboratory have made a novel development to improve battery performance testing.
Future of energy
The team’s work focuses on the design and placement of the reference electrode (RE), which measure voltage of the individual electrodes making up a battery cell, to enhance the quality of information collected from lithium-ion battery cells during cycles. By improving our knowledge of what’s happening inside the battery, researchers will more easily be able to develop longer-lasting batteries.
“Such information is critical, especially when developing batteries for larger-scale applications, such as electric vehicles, that have far greater energy density and longevity requirements than typical batteries in cell phones and laptop computers,” said Daniel Abraham, ECS member and co-author of the newly published study in the Journal of The Electrochemical Society. “This kind of detailed information provides insight into a battery cell’s health; it’s the type of information that researchers need to evaluate battery materials at all stages of their development.”
(READ: Battery and Fuel Cell Technology)
Energy storage solutions
The use of the RE has provided researchers with critical information pertaining to battery gaining, working to mitigate the gaining phenomena to increase longevity and commercial viability of batteries in large-scale energy storage applications.
This from Argonne National Laboratory:
Until recently, Argonne battery researchers would use only one RE, based on a lithium-tin (Li-Sn) alloy, to collect information. However, Abraham’s team found that by sandwiching a Li-Sn RE between the positive and negative electrodes, while simultaneously positioning a pure Li metal RE next to the stack, they could obtain insights into electrode state-of-charge shifts, active material use, active material loss and impedance changes.
“Silicon-containing electrodes could double the energy stored in lithium-ion cells,” Abraham said. “Our new RE configuration confirms the beneficial impact of these additives, not only in reducing capacity loss but also in mitigating the impedance rise displayed by cells without these additives.”