Water Helps Form Tiniest Wires Ever

The nanowires were created through a process called meniscus-mask lithography.Image: Tour Group/Rice University

The nanowires were created through a process called meniscus-mask lithography.
Image: Tour Group/Rice University

Scientists and researchers around the world are always looking for ways to improve technology. While we’ve been making smaller circuits to improve semiconductors for some time now, we’ve just about reached the physical limits of shrinking nanowires. However, this newly developed technique allows for the formation of the tiniest wires yet.

A new technique has been developed that uses water to create patterns of wires less than 10 nanometers wide.

“This could have huge ramifications for chip production since the wires are easily made to sub-10-nanometer sizes,” said lead author James M. Tour. “There’s no other way in the world to do this en masse on a surface.”

The findings were published in the journal Nano Letters.

The key component behind this development is the use of water. By utilizing water’s curvy surface, the researchers have been able to produce the tiniest wires yet.

This from Futurity:

The meniscus-mask process involves adding and then removing materials in a sequence that ultimately leaves a meniscus covering the wire and climbing the sidewall of a sacrificial metal mask that, when etched away, leaves the nanowire standing alone.

Read the full article here.

No new tools or materials should be needed to implement this new process in modern fabrication technology.


ECS Digital Library
Find out more about nanowires by checking out these papers in the ECS Digital Library. While you’re there, make sure to sign up for our free RSS Feed and e-Alerts!

DISCLAIMER

All content provided in the ECS blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *